<|lI!

IBM Host Access Transformation Services

Web Application Programmer's Guide

Version 96

SC27-5902-02

<|lI!

IBM Host Access Transformation Services

Web Application Programmer's Guide

Version 96

SC27-5902-02

Note
Before using this information and the product it supports, be sure to read the general information under
[“Notices,” on page 155|

Tenth Edition (November 2015)

© Copyright IBM Corporation 2003, 2018.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures
Tables

Chapter 1. Introduction
Code examples
Using the API documentatlon (]avadoc)

Chapter 2. Adding business logic.
Incorporating Java code from other applications
Using global variables in business logic
Business logic examples
Example: Date conversion .
Example: Adding values that are contamed in an mdexed global var1ab1e .

Example: Reading a list of strings from a file into an indexed global variable.

Example: Calling an Integration Object .
Using custom screen recognition

Example of custom screen recognition

Custom screen recognition using global Varlables
Accessing javax.servlet classes .

Chapter 3. Creating custom components and widgets
HATS component tag and attributes .
Creating a custom host component
Extending component classes
Creating a custom HTML widget .
Extending widget classes .
Widgets and global rules . .o
Registering your component or widget . .
HATS Toolkit support for custom component and Wldget settmgs .

Chapter 4. Working with Dojo W|dgets .
Customizing a HATS Dojo widget.
Component settings
Widget settings .
HATS Dojo widget customlzatlon examples
Using the Dojo TabContainer widget .
Using the Dojo TabContainer widget in a HATS Web pr0]ect
Using the Dojo TabContainer widget in a HATS portlet project .

Chapter 5. Programmlng in HATS Portlets
Standard portlets

Using security

Extending the Entry portlet

Running Integration Objects .

Chapter 6. Programming with Integration Objects
A common class for accessing Integration Object information.
Java class hierarchy of Integration Objects .
Integration Object methods .

Common methods .

Host Access Integration Ob]ect methods

Database Access Integration Object methods
Specifying Connection Overrides .

© Copyright IBM Corp. 2003, 2018

. Vii

. 47
. 47
. 47
. 49
. 50

. 53
. 53
. 54
. 54
. 54
. 55
. 57
. 57

iii

Integration Object chaining .
Applying XML style sheet processmg to Integratlon Ob]ect output .
DTD of XML data that is returned by getHPubXMLProperties() method .

DTD of XML data that is returned by getHPubXMLProperties (HPubConvertToTableFormat xsl) method .

Chapter 7. Developing Web services .
Creating traditional (WSDL-based) Web services .
Creating a Bottom-up Web service from Integration Ob]ects
Testing your Web service with Web Services Explorer
Creating a Web service client
Creating a Top-down Web service that 1nc1udes Integratlon Ob]ects
Programming with Web Services Integration Objects and EJB Access Beans .
Updating Web services
Web services for JAX-WS runtlme c0n51derat10ns and llmltatlons
Creating RESTful Web services . .
Creating RESTful service JAX-RS resources .
Updating RESTful service JAX-RS resources
Customizing RESTful service JAX-RS resource methods
Handling content . .
Customizing the response header .
HTTP status codes . .
JAX-RS RESTful services con51deratlons and 11m1tat10ns

Chapter 8. Integration Objects - advanced topics
Customizing Integration Object Java code
Choosing Integration Object templates
Choosing Integration Object templates for a bldlrectlonal pro]ect
Modifying Java coding templates . .
Sample modified Integration Object template .
Using Integration Objects in a WebSphere Java EE apphcatlon
Using an Integration Object in a Web container (custom servlet or]SP)
Using an Integration Object in an EJB container (from your own EJB) .
Connection management API
acqulreEx1st1ngTransformat10nConnectlon
releaseExistingTransformationConnection

Chapter 9. Creating plug-ins for Web Express Logon
Creating custom plug-ins for Web Express Logon.

Web Express Logon plug-in interface .

Writing a Network Security plug-in

Writing a Credential Mapper plug-in .

Sample Web Express Logon plug-in .

Encrypting and decrypting plug-in parameter strmgs

The DCAS API object . o

Chapter 10. Using the HATS bidirectional API

Data Conversion APIs
ConvertVisualToLogical .
ConvertLogicalToVisual .

Global Variable APIs .
getGlobalVariable .
getSharedGlobalVariable.

BIDI OrderBean .

BIDI OrderBean methods

Appendix A. HATS Toolkit files .
Application file (.hap)

<application> tag .

<connections> tag .

<connection> tag .

iV IBM Host Access Transformation Services: Web Application Programmer's Guide

. 59
. 61
. 61
. 62

. 65

. 66
. 66
. 68
. 68
. 69
. 69
.70
.71
.71
.72
.75
.75
.77
. 78
.79
.79

. 81

. 81
. 82
. 82
. 83
. 85
. 86
. 86
. 89
.91
.92
.92

. 93

. 93
. 94
.97
.97
. 98
. 98
. 98

. 101
. 101
. 101
. 101
. 101
. 102
. 102
. 102
. 103

. 107
. 107
. 107
. 108
. 108

<eventPriority>tag .108
<event>tag .08
<classSettings>tag .108
<class>tag L. s 108
<setting>tag L L L1009
<textReplacement>tag .. .18
<replace>tag L 118
<defaultRendering>tag 19
<renderingSet>tag o1
<renderingltem>tag 19
<globalRules>tag .. 122
<rule>tag L o L L L L Lo e s 22
Connection files (hco) L o L oL L0 L1224
<hodconnection>tag. L .. .12
<otherParameters>tag 129
<classSettings>tag 13
<class>tag L3
<setting>tag L . L L L. L. 13
<poolsettings>tag. L. 134
<webexpresslogon>tag .13
<userconfig> tag . . . P G 1)
Template and transformation flles (. sp) P G)
Screen combination files (.evnt) .13
<combinations>tag 136
<enddescription>tag.13
<navigation>tag L L L L L 137
<screenUp>tag L L e 137
<screenDown>tag L L L. 1E
<keyPress>tag. L L3y
<setCursor>tag 137
<sendText> . . . T K V4
Screen customization flles (evnt) O K V4
<event>tag L L . L. ... 138
<actions>tag L L L. L ... 138
<apply>tag. 13s
<insert>tag. 13s
<extract>tag L L L L L L L 13
<set>tag. L L L L. e
<execute>tag L L . L L L s s 1
<show> tag . . . e Y
<forwardtoURL> tag e Y |
<disconnect>tag ...
<play>tag L Lo s a2
<perform>tago 142
<pause>tag. L ... 142
<sendkey>tag L L L. oL s 142
<globalRules> tag 142
<rule> tag . . . O U ¥
<associatedScreens> tag e <3
<screen>tag. L. L. s 145
<description>tag 145
<oia>tag. L L Lo 145
<string>tag. L 145
<nextBvents>tag L L L. L ... e
<event>tag L . L L L L e 147
<remove>tag L L4y
Macro files (hma). L oL oL ey
<macro> tag. . . . e v v
<assoc1atedConnect10ns> tag e v
<connection>tag L L L Lo L4y
<extracts>tag L L L L L L4y

Contents V

<extract> tag
<prompts> tag .
<prompt> tag .
<HAScript> tag
Screen capture files (.hsc)
BMS Map files (.bms and .bmc)
Image files (.gif, jpg, or .png) .
Stylesheet files (.css) .
Spreadsheet files (.csv or .xls) .
Host simulation trace files (.hhs) .
ComponentWidget.xml . .
Web Express Logon configuration f11e (hatswelcfg xml)
<credentialmapper> tag .
<networksecurity> tag
<cmplugins> tag .
<plugin> tag
<param> tag

Appendix B. Notices
Programming interface information .
Trademarks .

Glossary

Index .

Vi IBM Host Access Transformation Services: Web Application Programmer's Guide

. 148
. 149
. 149
. 150
. 150
. 150
. 151
. 151
. 153
. 153
. 153
. 153
. 153
. 154
. 154
. 154
. 154

. 155
. 156
. 157
. 159

. 167

Figures

—_
COPN U RN

N I el el e el el el el
OCORXNUTE LN

Flow of data from host screen to Web page .

HATS default Dojo Combo Box widget

Host screen for the Flights Reservation System.

Dojo Combo box widget with list of cities .

Dojo Combo box widget with filtered list of cities.

Dojo Combo box using starting-with list of cities .

Dojo Combo box prompt message .

Dojo Combo box invalid message .

Work with Active Jobs host screen .

Dojo Enhanced grid widget . .

Dojo Enhanced grid widget with smgle row select

Host screen with account number input field

Dojo Filtering select widget . . .

Dojo Filtering select widget using global Varlable

Dojo Text box widget .

Dojo Number spinner widget

Host screen to render using the TabContamer DOJO w1dget
Dojo Enhanced grid widget in Dojo TabContainer widget .

Graph (horizontal bar) widget in Dojo TabContainer widget .

HATS RESTful Web service architecture .

© Copyright IBM Corp. 2003, 2018

. 20
. 29
.32
. 33
. 33
. 34
. 35
. 35
. 36
. 36
. 37
. 37
. 38
. 39
. 39
. 40
.41
. 43
.44
.72

vii

viil IBM Host Access Transformation Services: Web Application Programmer's Guide

Tables

1. Valid values for settings e 15
2. Javax.servlet class plus HATS class plus the method to access.16
3. Plug-in combinations .48
4. Sample XMLdata0l
5. Status code definitions. .. .9%
6. Code pages and usage keys. .12

© Copyright IBM Corp. 2003, 2018 ix

X IBM Host Access Transformation Services: Web Application Programmer's Guide

Chapter 1. Introduction

The Host Access Transformation Services (HATS) Toolkit offers many tools for
creating and customizing Web HATS applications that provide an easy-to-use
graphical user interface (GUI) for your character-based 3270 or 5250 host
applications. HATS Web applications, including portlets can be developed with a
look and feel that matches your company's Web or portal pages, and your users
can access them through their Web browsers. HATS can also be used to create
service-oriented architecture (SOA) assets from logic contained in your character
based 3270, 5250, or VT applications.

Service-Oriented Architecture expresses a perspective of software architecture that
defines the use of loosely coupled software services to support the requirements of
the business processes and software users. In an SOA environment, resources on a
network are made available as independent services that can be accessed without
knowledge of their underlying platform implementation.

SOA can also be regarded as a style of Information Systems architecture that
enables the creation of applications that are built by combining loosely coupled
and interoperable services. These services operate together based on a formal
definition or contract (for example, WSDL) that is independent of the underlying
platform and programming language. The interface definition hides the
implementation of the language-specific service. SOA-compliant systems can
therefore be independent of development technologies and platforms (such as
Java" and .NET). For example, services written in C# running on .NET platforms
and services written in Java running on Java EE platforms can both be consumed
by a common composite application. In addition, applications running on either
platform can consume services running on the other as Web services, which
facilitates reuse. SOA can support integration and consolidation activities within
complex enterprise systems, but SOA does not specify or provide a methodology
or framework for documenting capabilities or services.

You might find that your HATS application requires some additional function that
you cannot add using the wizards and editors in HATS Toolkit and IBM® Rational®
Software Delivery Platform (SDP). This Web Application Programmer’s Guide
explains several ways that you can extend your HATS application with additional
programming. It also assumes that you are familiar with basic HATS concepts such
as:

* How HATS processes host screens

* Creating a transformation using components and widgets
* Events and actions

* Using global variables

* Recording a macro

* Creating an Integration Object from a macro

If you are not already familiar with any of these topics, refer to the information
about them in HATS User's and Administrator’s Guide so that you will have the
necessary background to make good use of the information in this book. You
should also be familiar with using Rational SDP to create Java EE applications.

© Copyright IBM Corp. 2003, 2018 1

This Web Application Programmer’s Guide describes ways to enhance your HATS

application by programming. You can:

* Add business logic classes to be invoked as an action when an event occurs. You
can also create custom logic to aid in recognizing host screens. See [Chapter 2,
[“Adding business logic,” on page 3| for more information.

Add new host components or widgets to be used in transformations by
extending the existing host components and widgets. See [Chapter 3, “Creating]|
fcustom components and widgets,” on page 17| for more information.

* Perform several programming tasks with Integration Objects. See |Chapter 6,|
“Programming with Integration Objects,” on page 53| and [Chapter 8, “Integration|
Objects - advanced topics,” on page 81| for more information.

* Make one or more Integration Objects available as a Web service, which makes
the objects available for use by other applications. See [Chapter 7, “Developing]
[Web services,” on page 65| for more information.

* Create your own plug-ins for Web Express Logon. See [Chapter 9, “Creating|
[plug-ins for Web Express Logon,” on page 93.

« Enhance the capabilities of your HATS portlets. See [Chapter 5, “Programming in|
[HATS Portlets,” on page 47| for more information.

* Use the HATS bidirectional API to work with the orientation of screen elements
in applications that use bidirectional code pages. See [Chapter 10, “Using the]
[HATS bidirectional APL"” on page 101| for more information.

When enhancing your applications, you might find that you need to edit some of
the Java source files. Information provided in the section of the Rational Software
Delivery Platform help titled Developing Java applications can help you with this
task.

Code examples

Code examples throughout this guide illustrate the use of the objects or APIs
introduced in the adjoining sections. The examples may or may not work if you
copy them from the book into your application.

Using the APl documentation (Javadoc)

The HATS API reference documentation is useful for many programming tasks. To
view this documentation, see IBM Knowledge Center collection for HATS at
http:/ /www.ibm.com/support/knowledgecenter /SSXKAY_9.6.0 and click the
HATS API References (Javadoc) link. Refer to this documentation when you need
information about, and examples of, any of the Application Programming
Interfaces provided with HATS.

2 IBM Host Access Transformation Services: Web Application Programmer's Guide

Chapter 2. Adding business logic

Business logic is any Java code that is invoked as an action when an event occurs,
such as a host screen being recognized or your HATS application being started.
Business logic is specific to the application and is not provided as part of HATS.
You can use business logic to extend your HATS application to integrate with other
data sources, such as a database or an Integration Object. For example, you can
read the contents of a file or a database into HATS global variables and use the
global variables to fill in a drop-down list or pop-up to be used in the application's
GUI pages.

HATS automatically updates your class loader policy when you include HATS
business logic in your HATS Web project. This updates the default WAR class
loader policy of your HATS application to Single class loader for application.

You can create business logic and add it to your project using the Create Business
Logic wizard. To invoke this wizard, right-click in the HATS Projects tab of the
HATS Toolkit, and click New HATS > Business Logic.

In the Create Business Logic wizard, specify the project you want to add the
business logic to and supply the Java class name. The default package name is
projectName.businessLogic, but you can change this in Studio Preferences.
Optionally, you can supply a package name or click Browse to select an existing
Java package. If you want your business logic to include methods for easy access
to the project global variables, or to remove project global variables, select the
Create global variable helper methods check box. Click Finish when you have
provided the required information.

After you create your business logic class, you will want to link it to one or more
screen or application events so it is executed when that event occurs. Edit each
event (application event or screen customization) to which you want to add the
link. On the Actions tab, click Add, select Execute business logic, then fill in the
details for your business logic class. Refer to [HATS User’s and Administrator’s Guide|
for information about editing both screen customization and events.

You can see the business logic files in the project by expanding the Source folder
on the HATS Project View tab of the HATS Toolkit. Each package name or class
name appears in the Source folder. Expand the package name folder to see the
Java class name. Click the class name to edit the class. The Source folder can also
include other Java files that have been imported into your HATS project.

If you use the Create Business Logic wizard to create business logic, the method
that is invoked by the execute action is named execute by default. If you write
your own class, the method must have the following attributes:

* Be marked public and static

* Have a return type of void

* Accept a com.ibm.hats.common.IBusinessLogicInformation object as the only
parameter

The method must use this form, followed by your own business logic code:

public static void myMethod (IBusinessLogicInformation businesslogic)

© Copyright IBM Corp. 2003, 2018 3

ugscreco.htm

The [BusinessLogicInformation object that is passed to your custom Java code
enables you to access and use or modify various objects and settings of your HATS
project. These include:

* The com.ibm.hats.runtime.IRequest class, which returns an object representing
the request made to the HATS runtime and provides access to request
parameters.

* The com.ibm.hats.runtime.IResponse class, which returns an object representing
the response from the HATS runtime.

* The getConnectionMap() method, which returns a java.util. Map that contains the
settings for the connection information that you provided for the application.

* The getGlobalVariables() method, which returns a java.util. Hashtable of global
variables for this application instance. This table does not include shared global
variables.

» The getSharedGlobalVariables() method, which returns a java.util. Hashtable of
shared global variables for this application instance.

* Class properties, which provide default settings for objects such as components
and widgets

* The com.ibm.hats.common.HostScreen object, which contains host screen
information

* The java.util.Locale class of the client

* The com.ibm.hats.common.TextReplacementList values and settings

* The client session identifier string (returned by getter methods in the business
logic template that the Create Business Logic wizard provides)

* The current screen orientation of bidirectional sessions

¢ The existence of the Screen Reverse button in the browser for bidirectional
sessions

For more information about the classes made available to you, see the HATS API
documentation in the HATS Knowledge Center at [http:/ /www.ibm.com /support /|
[knowledgecenter /SSXKAY_9.6.0| for the IBusinessLogicInformation class. Since
IBusinessLogicInformation extends the IBaselnfo class, several of these APIs are
defined in the IBaselnfo class.

Incorporating Java code from other applications

You can incorporate Java code from other existing applications into your HATS
projects in a variety of ways.

If you want to incorporate the source code (;java files) from your existing business
logic so you can modify the code, you can import the java files into the Source
folder in your existing project. Click File > Import > General > File System to
open the Import wizard. In the Import wizard, select the location of your source
files in the From directory field. For Web projects, select the Java Source folder of
your project in the destination Into folder entry field. When your source .java files
are imported, they are automatically compiled and packaged into your HATS
project. You can edit, set breakpoints, and debug your source files in the Rational
SDP workbench.

You can also incorporate a Java archive (jar) file with compiled Java business logic.
The entire Java archive is added; you cannot select individual classes to add.

1. Import the jar file into the HATS EAR project.
a. Click File > Import > General > File System to open the Import wizard.

4 IBM Host Access Transformation Services: Web Application Programmer's Guide

http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0
http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0

b. Select the source directory of the Java archive (jar) you want to import in
the From directory field.

Select the jar file from the right pane.
Select your HATS EAR project as the destination in the Into folder field.
Click Finish.

When your jar file is imported, click the Navigator tab of the HATS Toolkit
and expand your HATS ear project. You will see the imported java archive
file.

2. Add ajava archive to the project build path.

a. In the Navigator tab of the HATS Toolkit, select the project in which you
want to invoke your business logic.

b. Right-click the high-level HATS project, and select Properties.

c. In the Properties window, select Java Build Path in the left table and click
the Libraries tab on the right.

d. Click Add JARs to open the JAR Selection window.

e. Expand the HATS EAR project, and select the newly imported Java archive
file.

f. Click OK in the JAR Selection window, and click OK in the Properties
window.

-0 a0

g. Repeat this process for all HATS projects for which you want to use the
business logic.

3. Define the project where the business logic is to be invoked.
a. In the Navigator tab of the HATS Toolkit, again select the project in which
you want to invoke your business logic.
b. Expand the project, the Web Content folder, and the META-INF folder.
c. Double-click the MANIFEST.MF file to open the JAR dependencies editor.

Select the check box next to each .jar file that you want to include in your
project's class path.

There are other ways to import Java archives into the HATS project. HATS projects
are extensions of Web projects in the Rational SDP workbench. For more
information about importing files into Web projects, open the Rational SDP Help
and search for Web projects

Using global variables in business logic

If your HATS application uses global variables to store information, you can use
these global variables in your business logic.

There are two types of global variables: local and shared. A local global variable is
one that is created within a HATS project and is only visible to the project. A
shared global variable is one that is visible to and can be used by all the
applications in an EAR file. There are also two lists of HATS global variables, one
for local global variables and one for shared global variables. Two global variables
with the same name can coexist if one is local and the other is shared.

When you create your business logic class, use the Create Business Logic wizard
and select the Create global variable helper methods check box. This creates
methods in your business logic for getting, setting, and removing local and shared
global variables.

The following methods are created:

Chapter 2. Adding business logic 5

LIHTTTEIIL LTI L L i i i i i iriiiiiieliiiileiiiiiiileiiiiilies
// This sample is provided AS IS.

// Permission to use, copy and modify this software for any purpose and

// without fee is hereby granted. provided that the name of IBM not be used in
// advertising or publicity pertaining to distribution of the software without
// specific written permission.

// 1BM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SAMPLE, INCLUDING ALL
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL IBM
// BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

// DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
// IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
// OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SAMPLE.
;///
*%

* Example method that sets a named global variable

from the current session to a value

@param bT1Info - IBusinessLogicInformation from current session

@param name - Name of the global variable

@param value - Value of the global variable

E I I

*/

public static void setGlobalVariable(IBusinessLogicInformation blInfo,
String name,Object value)

{

IGlobalVariable gv = blInfo.getGlobalVariable(name);
if (gv==null)

{

gv = new GlobalVariable(name,value);

}

else
gv.set(value);

1
b1Info.getGlobalVariables().put(name,gv);
}

[*%
* Example method that sets a named shared
* global variable from the current session to a value
* @param b1Info - IBusinessLogicInformation from current session
* @param name - Name of the shared global variable
* @param value - Value of the shared global variable
*/
public static void setSharedGlobalVariable(IBusinessLogicInformation
b1Info,String name,Object value)
{
IGlobalVariable gv = blInfo.getSharedGlobalVariable(name);
if (gv ==null)
{
gv = new GlobalVariable(name,value);

}

else

gv.set(value);
}
b1Info.getSharedGlobalVariables().put(name,gv);
}

[**
* Example method that removes a named global variable from the current session
* @param blInfo - IBusinessLogicInformation from current session
* @param name - Name of the global variable
*/
public static void removeGlobalVariable(IBusinessLogicInformation blInfo, String name)
{

IGlobalVariable gv = blInfo.getGlobalVariable(name);

if (gv !=null)

{

b1Info.getGlobalVariables().remove(name);
gv.clear();
gv = null;

}

[**

* Example method that removes a named shared global variable from the current session

* @param blInfo - IBusinessLogicInformation from current session

* @param name - Name of the shared global variable

*

/

public static void removeSharedGlobalVariable(IBusinessLogicInformation b1Info, String name)

{

6 IBM Host Access Transformation Services: Web Application Programmer's Guide

IGlobalVariable gv = blInfo.getSharedGlobalVariable(name);
if (gv!=null)
{

b1Info.getSharedGlobalVariables().remove(name);
gv.clear();
gv = null;
}
}
[**
* Example method that retrieves a named global variable from the current session
* @param blInfo - IBusinessLogicInformation from current session
* @param name - Name of the global variable
* @return - an instance of the global variable, or null if not found.
*
/
public static IGlobalVariable getGlobalVariable(IBusinessLogicInformation
b1Info,String name)

IGlobalVariable gv = blInfo.getGlobalVariable(name);
return gv;

[**

* Example method that retrieves a named shared

* global variable from the current session

* @param b1Info - IBusinessLogicInformation from current session

* @param name - Name of the shared global variable

* @return - an instance of the global variable, or null if not found.

*
/

public static IGlobalVariable getSharedGlobalVariable(IBusinessLogicInformation
b1Info,String name)

IGlobalVariable gv = blInfo.getSharedGlobalVariable(name);
return gv;

}

Elsewhere in your code, when you need the value of a local global variable, you
can call this method:

GlobalVariable gvl = getGlobalVariable(blInfo,"varname");

To get the value of a shared global variable, use the following method:
GlobalVariable gvl = getSharedGlobalVariable(blInfo,"varname");

Business logic examples

This section contains examples of using business logic. Each works with global
variables. Each example uses one or more of the global variable helper methods
previously described, and the classes should include those methods. They are
omitted in these examples to make it easier to view the example code.

Example: Date conversion

This example converts a date from mm/dd/yy format to month, day, year format.
For example, the example converts 6/12/2004 into June 12, 2004. The example
assumes that the global variable theDate has been set before the business logic is
called. Note how the example uses the following method to obtain the value of the
input variable:

IGlobalVariable inputDate = getGlobalVariable(blInfo, "theDate");

After using standard Java functions to manipulate the string to represent the date
in the desired format, the example uses the following method to put the new
string into the same global variable:

setGlobalVariable(b1Info, "theDate", formattedDate);

i
// This sample is provided AS IS.
// Permission to use, copy and modify this software for any purpose and

Chapter 2. Adding business logic 7

// without fee is hereby granted. provided that the name of IBM not be used in
// advertising or publicity pertaining to distribution of the software without
// specific written permission.

// 1BM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SAMPLE, INCLUDING ALL

// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL IBM

// BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

// DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER

// IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING

// OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SAMPLE.
IR0 111171117111111111
import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.util.Date;

import com.ibm.hats.common.IBusinessLogicInformation;
import com.ibm.hats.common.GlobalVariable;
import com.ibm.hats.common.IGlobalVariable;

public class CustomDateFormatter

{

public static void execute(IBusinessLogicInformation blInfo)

IGlobalVariable inputDate = getGlobalVariable(blInfo, "theDate");
SimpleDateFormat inputFormat = new SimpleDateFormat ("MM/dd/yyyy");
SimpleDateFormat outputFormat = new SimpleDateFormat ("MMMM dd, yyyy");

try
{
Date tempDate = inputFormat.parse(inputDate.getString().trim());
String formattedDate = outputFormat.format(tempDate);
setGlobalVariable(blInfo, "theDate", formattedDate);
}
catch (ParseException ex)
{
ex.printStackTrace();

}

Example: Adding values that are contained in an indexed
global variable

This example adds the values that are contained in an indexed global variable and
stores the sum in another, non-indexed global variable. It assumes that you have
stored strings representing numbers in the indexed global variable subtotals.

The previous example included the names of the input and output global variables
(theDate) on the set calls. This example sets the names of the input and output
variables into local string variables and uses those strings on calls to get and set
the global variable values. Because the name of the global variable is being passed
as a variable, it is not put into quotes:

setGlobalVariable(blInfo,gvOutputName, new Float(myTotal));

LIITITTEIIL LTI LI LI i i i i iiiiiiiiileiiiliiiiiiiiileliiiiiigl
// This sample is provided AS IS.

// Permission to use, copy and modify this software for any purpose and

// without fee is hereby granted. provided that the name of IBM not be used in

// advertising or publicity pertaining to distribution of the software without

// specific written permission.

// 1BM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SAMPLE, INCLUDING ALL

// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL IBM

// BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

// DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER

// IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING

// OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SAMPLE.
HTITITITEEI LTI 1L L1 0111011111111111111111111111111
import com.ibm.hats.common.IBusinessLogicInformation;

import com.ibm.hats.common.GlobalVariable;

import com.ibm.hats.common.IGlobalVariable;

public static void execute(IBusinessLogicInformation b1Info)

8 IBM Host Access Transformation Services: Web Application Programmer's Guide

{

// Name of indexed global variable to be read in
String gvInputName = "subtotals";
// Name of global variable to be calculated and saved
String gvOutputName = "total";

// The indexed global variable where each index is a subtotal to be summed
GlobalVariable gvSubtotals =
((Globalvariable)getGlobalVariable(b1Info, gvInputName));

float myTotal = 0;

// Calculate the total by adding all subtotals

for (int i = 0; i < gvSubtotals.size(); i++)

{

myTotal = myTotal + Float.valueOf(gvSubtotals.getString(i)).floatValue();

// Save the total as a non-indexed local variable
setGlobalVariable(b1Info,gvOutputName, new Float(myTotal));

Example: Reading a list of strings from a file into an indexed
global variable

This example reads a file from the file system and stores the strings in the file into
an indexed global variable. You can use a technique like this to read a file that
contains, for example, a list of your company's locations. After storing the strings
in a global variable, you can use the global variable to populate a drop-down list
or other widget to enable users to select from a list of values. You can create a
global rule to use this widget wherever an appropriate input field occurs. To make
sure that the global variable is available as soon as the application is started, add
the execute action for this business logic class to the Start event.

Note: If your text file has carriage returns and line feeds between lines, you might
need to use “\r\n” as the second argument of the StringTokenizer
constructor call in the following example.

[IHTITTIILILEIL LTI 0L 01100100101 17111111111111111111111111111
// This sample is provided AS IS.

// Permission to use, copy and modify this software for any purpose and

// without fee is hereby granted. provided that the name of IBM not be used in
// advertising or publicity pertaining to distribution of the software without
// specific written permission.

// IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SAMPLE, INCLUDING ALL
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL IBM
// BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

// DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
// IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
// OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SAMPLE.
[ITITTEIIILE LTI L i1 il i1 iiiiiririiiliiiieieiieiieiiiiigg
import com.ibm.ejs.container.util.ByteArray;

import com.ibm.hats.common.IBusinessLogicInformation;

import com.ibm.hats.common.GlobalVariable;

import com.ibm.hats.common.IGlobalVariable;

public class ReadNamesFromFile

public static void execute(IBusinessLogicInformation b1Info)

// Name of indexed global variable to be saved
String gvOutputName = "namesFromFile";

// The file containing a list of information (in this case, it contains names)
java.io.File myFileOfNames = new java.io.File("C:" + java.io.File.separator
+ "temp" + java.io.File.separator + "names.txt");
try
{
// First, read the contents of the file

java.io.FileInputStream fis = new java.io.FileInputStream(myFileOfNames);

Chapter 2. Adding business logic 9

int buffersize = (int)myFileOfNames.length();
byte[] contents = new byte[buffersize];;

long n = fis.read(contents, 0, buffersize);

fis.close();

String namesFromFile = new String(contents);

// Next, create an indexed global variable from the file contents

java.util.StringTokenizer stok =
new java.util.StringTokenizer(namesFromFile, "\n", false);

int count = stok.countTokens();
String[] names = new String[count];
for (int i = 0; i < count; i++)

names[i] = stok.nextToken();

}

IGlobalVariable gv = new GlobalVariable(gvOutputName, names);
b1Info.getGlobalVariables().put(gvOutputName,gv);

catch (java.io.FileNotFoundException fnfe)

{
fnfe.printStackTrace();

}

catch (java.io.IOException ioe)

ioe.printStackTrace();
}
1
}

Example: Calling an Integration Object

This example illustrates calling an Integration Object from business logic. The
example assumes that you have an Integration Object named Iomac, which takes
one input parameter, a string called input, and returns a string named output.

This business logic performs these steps:
1. Instantiates the Integration Object:
IntegrationObject.Iomac io = new IntegrationObject.Iomac();
2. Sets the input variable from a global variable:
jo.setInput(getGlobalVariable(b1Info,"input").getString());
3. Gets the servlet request and response objects from the HATS wrapper method
and invokes the Integration Object using the request and response:

WebRequest webReq = (WebRequest)blInfo.getRequest();
HttpServletRequest req = webReq.getHttpServietRequest();
WebResponse webResp = (WebResponse)blInfo.getResponse();
HttpServletResponse resp = webResp.getHttpServietResponse();
io.doHPTransaction(req,resp);

4. Checks for exceptions.

5. If the Integration Object executed successfully, sets the global variable output to
the value returned by the Integration Object's getOutput () method:

if (io.getHPubErrorOccurred() == 0)
setGlobalVariable(blInfo,"output",io.getOutput());

If you want to invoke an Integration Object that accepts more input variables or
returns more variables, add setter and getter calls to set the input variables before
invoking the Integration Object and retrieve the output values after it executes.

[ITIITTIIILEI LTI LI LT 0L 11 i 11ii1i111111111111111111111
// This sample is provided AS IS.

// Permission to use, copy and modify this software for any purpose and

// without fee is hereby granted. provided that the name of IBM not be used in

10 IBM Host Access Transformation Services: Web Application Programmer's Guide

// advertising or publicity pertaining to distribution of the software without
// specific written permission.

// 1BM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SAMPLE, INCLUDING ALL

// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL IBM

// BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

// DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER

// IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING

// OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SAMPLE.
ITITTEILIL LT I 0 i L i i1 riiiiiiiiiieiieiiiiiiieiiiiiiigi
import com.ibm.hats.common.IBusinessLogicInformation;

import com.ibm.hats.common.GlobalVariable;

import com.ibm.hats.common.IGlobalVariable;

public class mylLogic

{

public static void execute(IBusinessLogicInformation b1Info)

{
//add code here to perform your business logic
IntegrationObject.Iomac io = new IntegrationObject.lIomac();

// Set Integration Object's HAOVariable "input"
// equal to text from HATS gv "input"
io.setInput(getGlobalVariable(b1Info,"input").getString());

// Get the request and response objects from the HATS wrapper method and run the hp transaction

try {
WebRequest webReq = (WebRequest)blInfo.getRequest();
HttpServletRequest req = webReq.getHttpServietRequest();
WebResponse webResp = (WebResponse)blInfo.getResponse();
HttpServletResponse resp = webResp.getHttpServietResponse();
io.doHPTransaction(req,resp);
1
catch (Exception e) {
System.out.printin("Exception thrown: " + e.toString());
setGlobalVariable(blInfo,"output",
"An exception was thrown. Please view the log for more details");

}

// Retrieve "output" computed through IO transaction
// and set it to HATS gv "output"

if (io.getHPubErrorOccurred() == 0) {
setGlobalVariable(blInfo,"output",io.getOutput());
System.out.printin("Transaction has been completed successfully.");

else {
setGlobalVariable(blInfo,"output","Transaction has failed unexpectedly.
HATS Error message = " + jo.getHPubErrorMessage());

System.out.printin("Transaction failed unexpectedly. HATS Error message =
" + jo.getHPubErrorMessage()"); }

}

Note: To run an Integration Object from business logic in standard portlets, the
processRequest() method must be called instead of
doHPTransaction(HttpServletRequest, HttpServletResponse). You can use the
following code in step 3 (above) instead:

jo.setHPubStartPoolName("my hats_project/default_connection");
io.processRequest();

If the Integration Object is configured to use Web Express Logon in standard
portlets, you must ensure PortletRequest is available in the Integration
Object by calling setHPubPortletRequest(javax.portlet.PortletRequest) before
executing the processRequest() method. For example:
jo.setHPubStartPoolName("my hats project/default _connection");
com.ibm.hats.portlet.runtime.JsrStandardPortletRequest jsrReq =
(com.ibm.hats.portlet.runtime.JsrStandardPortletRequest)blInfo.getRequest();
javax.portlet.PortletRequest req = jsrReq.getPortletRequest();
io.setHPubPortletRequest(req);
io.processRequest();

Chapter 2. Adding business logic 11

Using custom screen recognition

You can use business logic to perform custom screen recognition. HATS Toolkit
provides many options for recognizing screens within a screen customization,
including the number of fields on a screen, the presence or absence of strings, and
the use of global variables. These options are described in [HATS User’s and|
[Administrator’s Guidel You might find, however, that you want to recognize a screen
in a way that you cannot configure using the options in the screen customization
editor. In that case, you can add your own custom screen recognition logic.

Note: The information in this section can be used for screen recognition within
macros as well as within screen customizations.

If you want to create custom screen recognition logic using HATS global variables,
see [“Custom screen recognition using global variables” on page 14/

If you have already created custom screen recognition logic by extending the
ECLCustomRecoListener class, you can use this logic within HATS. If you are
creating new custom logic, follow these steps:

1. Open the Java perspective.

2. Click File > New > Class.

3. Browse to the Source directory of your HATS project.
4. Enter the names of your package and class.

5. For the superclass, click Browse and locate

com.ibm.hats.common.customlogic. AbstractCustomScreenRecoListener.
6. Select the check box for Inherited abstract methods. Click Finish. This
imports the code skeleton into the project you specified.
7. Add your logic to the isRecognized method. Make sure that it returns a
boolean value.
public boolean isRecognized(String arg0, IBusinessLogicInformation
argl, ECLPS arg2, ECLScreenDesc arg3)

Refer to the HATS API documentation at the [HATS Knowledge Center] for a
description of this method.

8. After creating your method, you must update the screen recognition to invoke
your method. From the HATS Projects view, expand your project and the
Screen Customizations folder. Double-click the name of the screen
customization to which you want to add your custom logic. Click the Source
tab to open the Source view of the screen customization.

9. Within the Source view, you will see a block that begins and ends with the
<description> and </description> tags. This block contains the information
that is used to recognize screens. Add a line within this block to invoke your
custom logic:

<customreco id="customer.class.package.MyReco::settings"
invertmatch="false" optional="false"/>

where customer.class.package.MyReco is your package and class name. If you
want to pass any settings into your class, add them after the class name,
separated by two colons. Settings are optional, and your class must parse
whatever values are passed in. If you do not need settings, omit the two
colons.

Consider where within the description block you want to place the
<customreco> tag. If you want your custom logic invoked only if all the other
criteria match, place the <customreco> tag at the end of the block,

12 IBM Host Access Transformation Services: Web Application Programmer's Guide

ugscreco.htm
ugscreco.htm
http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0

10.
11.

immediately before the </description> tag. If your screen customization
compares a screen region to a value, the description block will contain a
smaller block, beginning and ending with the <block> and </block> tags, to
define the value to which the screen region is compared. Be sure not to place
your customreco tag inside this block.

Following is an example section of a description block. Note the <customreco>
tag just before the </description> tag, and not between the <block and
</block> tags.

<description>

<oia invertmatch="false" optional="false" status="NOTINHIBITED"/>

<numfields invertmatch="false" number="61" optional="false"/>

<numinputfields invertmatch="false" number="16" optional="false"/>

<block casesense="false" col="2" ecol="14" erow="21"
invertmatch="false" optional="false" row="20">

<string value="USERID ==="/>

<string value="PASSWORD ==="/>

</block>

<cursor col="16" invertmatch="false" optional="false" row="20"/>

<customreco id="customer.class.package.MyReco::settings"
invertmatch="false" optional="false"/>

</description>

To rebuild your HATS project, click Project > Clean on the toolbar.

Use Run on Server to test your project. If you receive a
ClassNotFoundException error, modify the class loader policy on your server.
Refer to |[HATS Getting Started| for more information.

Example of custom screen recognition

Following is an example of business logic that performs custom screen recognition.
This business logic class takes a list of code page numbers, separated by blanks, as
its settings, and recognizes the screen if its code page matches one of those listed
in the settings. The tag syntax is:

<customreco id="company.project.customlogic.CodePageValidate::[settings]"
optional="false" invertmatch="false" />

For example, you can insert the following tag into a description block:

<customreco id="company.project.customlogic.CodePageValidate::037 434 1138"
optional="false" invertmatch="false" />

In this case the screen will be recognized if its code page is 037, 434, or 1138.
s

This sample is provided AS IS.

Permission to use, copy and modify this software for any purpose and
without fee is hereby granted. provided that the name of IBM not be used in
advertising or publicity pertaining to distribution of the software without
specific written permission.

IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SAMPLE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL IBM
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SAMPLE.

I E i ELr i i i rriiiiiidieliliiieiiiiiliiiieliiiiiigl
package company.project.customlogic;

import java.util.StringTokenizer;

import java.lang.Integer;

import com.ibm.eNetwork.ECL.ECLPS;

import com.ibm.eNetwork.ECL.ECLScreenDesc;

import com.ibm.hats.common.IBusinessLogicInformation;

import com.ibm.hats.common.HostScreen;

import com.ibm.hats.common.customlogic.AbstractCustomScreenRecolListener;

public class CodePageValidate extends AbstractCustomScreenRecolistener {

Chapter 2. Adding business logic 13

gsassmbl.htm#xfer

[*%
* @see com.ibm.hats.common.customlogic.AbstractCustomScreenRecoListener
* #isRecognized(java.lang.String, com.ibm.hats.common.IBusinessLogicInformation,
* com.ibm.eNetwork.ECL.ECLPS, com.ibm.eNetwork.ECL.ECLScreenDesc)
*
/
public boolean isRecognized(
String settings,
IBusinessLogicInformation bli,
ECLPS ps,
ECLScreenDesc screenDescription) {
HostScreen hs=bli.getHostScreen();
int int_codepage=hs.GetCodePage();
if(settings!=null)
{
StringTokenizer tokenizer = new StringTokenizer(settings);
while(tokenizer.hasMoreTokens())
{
int int_token= Integer.valueOf(tokenizer.nextToken()).intValue();
if (int_token==int_codepage)
{

return true;

}
}

return false;

}
}

Custom screen recognition using global variables

HATS Toolkit provides some screen recognition options using global variables,
including these functions:

* Verify that a global variable exists
* Verify that a global variable does not exist

* Verify the integer or string value of a global variable

Refer to [HATS User's and Administrator’s Guide| for information about these options.
If you want to perform screen recognition that is based on HATS global variables
and the options in the Global Variable Logic panel do not meet your requirements,
you can add your own logic based on the values or existence of one or more
global variables. This approach does not require you to create a Java class; instead,
it uses the GlobalVariableScreenReco class, which is provided by HATS, and you
can specify comparisons to be made as settings on the <customreco> tag. The
format is one of the following:

* <customreco
id="com.ibm.hats.common.customlogic.GlobalVariableScreenReco::
{variable(name,option,resource, index)}COMPARE{type(name,option,resource,

index)}"
invertmatch="false" optional="false"/>

* <customreco
id="com.ibm.hats.common.customlogic.GlobalVariableScreenReco::
{variable(name,option,resource, index)}COMPARE{type(value)}"
invertmatch="false" optional="false"/>

Braces {} are used to contain each of the two items that are being compared. The
first item is a HATS global variable, whose name is specified in name. You can use
option to specify that you want to use the variable's value, length, or existence in
your comparison. The resource and index settings are optional. Use resource to
indicate whether the global variable is local (which is the default) or shared. Use
index to indicate which value to use from an indexed global variable.

The second item can be one of the following:

14 IBM Host Access Transformation Services: Web Application Programmer's Guide

ugscreco.htm

* Another HATS global variable, with similar options, in which case the first
format is used

* A fixed value, in which case the second format is used

The valid values for the settings are shown in [Table 1} For the COMPARE setting,
the only valid values for comparing strings are EQUAL and NOTEQUAL.

Table 1. Valid values for settings

Setting Valid values

type * variable
* integer
* boolean
* string

COMPARE . EQU AL

* NOTEQUAL

* GREATERTHAN

* GREATERTHANOREQUAL
* LESS THAN

* LESSTHANOREQUAL

options * exists (boolean)

* value (string/integer/boolean)
* length (integer)

* object (object)

resource e local
* shared
index Any positive integer or 0

The following example compares the values of two local global variables:

<customreco id="com.ibm.hats.common.customlogic.GlobalVariableScreenReco::
{variable(name=gvI,option=value,resource=Tocal)}EQUAL
{variable(name=gv2,option=value,resource=local)}"
invertmatch="false" optional="false"/>

This expression evaluates to true if the values of gvl and gv2 are the same.

Now consider the length option. For a non-indexed global variable, length is the
length of the value of the variable. For an indexed global variable, if you specify
an index, length is the length of that index of the global variable; if you do not
specify an index, length is the number of indexed entries in the global variable.
<customreco id="com.ibm.hats.common.customlogic.GlobalVariableScreenReco::

{variable(name=gvl,option=1ength,resource=shared) } LESSTHANOREQUAL
{variable(name=gv2,option=1length,index=4)}" invertmatch="false" optional="false"/>

This expression compares the length of gv1 to the length of the fourth index of gv2.
It evaluates to true if the length of gv1 is less than or equal to the length of the
fourth index of gv2. You can use LESSTHANOREQUAL because length returns an
integer value.

The use of resource=shared on gv1 in this example indicates that gv1 is a shared

global variable. The other option is resource=local, which is the default, and means
that the global variable is not shared with other applications.

Chapter 2. Adding business logic 15

You do not have to compare one global variable with another. You can compare

the length of a global variable with a fixed integer. You can compare the value of a

global variable with another string. For example:

<customreco id="com.ibm.hats.common.customlogic.GlobalVariableScreenReco::
{variable(name=gvl,option=value) }EQUAL{string(value=mystring)}"
invertmatch="false" optional="false"/>

This expression compares the value of gvl with the string that is contained in
mystring. The string can be a fixed string, the value of a variable, or a value that is
returned from a method call. In general, you do not need to use custom logic to
compare the length or value of a global variable to a fixed value; you can add
these comparisons using the Global Variable Logic panel.

Accessing javax.serviet classes

16

In order to provide a consistent set of APIs for both Web and rich client
application developers, some HATS APIs were generalized so they would work in
either a Web or rich client environment. For example, prior to HATS 7.0, the
javax.servlet.HttpServletRequest object for a request could be accessed via the
BusinessLogicInfo.getRequest() method. Although this API is still available (but
deprecated), new business logic classes use the new IBusinessLogicInformation
interface instead of the BusinessLogicInfo class.

The getRequest() method on this interface returns a com.ibm.hats.runtime.IRequest
object. In a Web application, this object will be of type
com.ibm.hats.runtime.WebRequest. WebRequest has similar methods to
HttpServletRequest, but does not extend from it. To access the actual
HttpServletRequest object from a WebRequest object, the getHttpServletRequest()
method can be called.

Table 2. Javax.serviet class plus HATS class plus the method to access

javax.servlet Class + Wrapper HATS Class + Method to access
HttpServletRequest com.ibm.hats.runtime.WebRequest WebRequest.getHttpServletRequest()
HttpServletResponse com.ibm.hats.runtime.WebResponse WebResponse.getHttpServletResponse()
ServletContext com.ibm.hats.runtime.WebContext WebContext.getServletContext()
ServletConfig com.ibm.hats.runtime.WebConfig WebConfig.getServletConfig()

See tlie Javadoc API for IBusinessLogicInformation for more information and code
samples.

IBM Host Access Transformation Services: Web Application Programmer's Guide

Chapter 3. Creating custom components and widgets

HATS provides a set of host components that recognize elements of the host screen
and widgets that render the recognized elements. The components and widgets
have settings that you can modify if the default settings do not recognize
components or render widgets as you want them. If the components, widgets, and
the settings that are provided by HATS do not meet your needs, you can create
your own custom components or widgets or modify existing host components or
widgets. You might want to create your own host component in order to recognize
elements of your host screen that the HATS components do not recognize. You
might want to create your own widget in order to change the way elements are
presented on the Web page. The following sections describe how to create custom
host components and widgets. For further information, see [Appendix A, “HATS|
[Toolkit files,” on page 107,

Notes:

1. HATS automatically updates your class loader policy when you add custom
components or widgets to your HATS application. This updates the default
WAR class loader policy of your HATS application to Single class loader for
application.

2. If you are using a bidirectional code page, you can control the direction of

widgets and other presentation aspects. See [Chapter 10, “Using the HATS|
[pidirectional API,” on page 101.|

HATS component tag and attributes

HATS creates a JavaServer Pages (JSP) page (and writes information to a .jsp file)
that reflects host component and widget selections that were made during
transformation configuration in the HATS Toolkit. HATS writes this configuration
as a set of attributes for the <HATS:Component> tag. The <HATS:Component> tag
invokes the code to define host components and specify widget output. To view or
edit the transformations in your HATS project, expand the project in the HATS
Projects view and look under Web Content/Transformations.

This JSP code example shows the format of the <HATS:Component> tag.

<HATS:Component type="<fully qualified component class name>"
widget="<fully qualified widget class name>"
row="1" col="1" erow="24" ecol="80" componentSettings="" widgetSettings=""
textReplacement="" />

The attribute data of the <HATS:Component> tag determine which host
component and widget classes to call and how to present the widget in HTML
output. The type attribute of the <HATS:Component> tag specifies which
component recognition class to use when recognizing the selected host screen
component. The widget attribute specifies which rendering class to use when
generating the HTML output. The following list describes the other attributes:

row The starting row position for host component recognition.
col The starting column position for host component recognition.
erow The ending row position for host component recognition. You can

specify -1 to mean the last row on the host screen.

© Copyright IBM Corp. 2003, 2018 17

ecol The ending column position for host component recognition. You
can specify -1 to mean the last column on the host screen.

componentSettings
A set of key and value pairs that is sent to the component class.
When you specify componentSettings values, specify them in the
form key:value. If you specify more than one key:value pair,
separate them with a split vertical bar (|). For example, <..
componentSettings="keyl:valuel | key2:value2" ... >.

You can use the componentSettings attribute for advanced
customization of the component. Surround the entire list with
quotation marks. For example, if your command line uses the
token >>> instead of ==>, you can pass this component setting
value here.

widgetSettings
A set of key and value pairs that is sent to the widget class. When
you specify widgetSettings values, specify them in the form
key:value. If you specify more than one key:value pairs, separate
them with a split vertical bar (|). Surround the entire list with
quotation marks. For example, <...
widgetSettings="keyl:valuel|key2:value2" ... >.

You can use the widgetSettings attribute for advanced
customization of the widget. For example, if you want a table to
have a certain number of columns, you can pass this widget setting
here.

textReplacement
Any settings that are defined for text replacement for this use of
the component. Text replacement attributes are the same as those
for definition of text replacement at the project level. See
[“<replace> tag” on page 118 for descriptions of the attributes.

When defining text replacement, if you want to replace certain
special characters, you must use the following in the settings:

@vb. | (split vertical bar)
@cm. , (comma)

@dq. " (double quote)
@lt. < (less than)

@gt. > (greater than)

@eq. = (equal sign)

For example, to replace the string ABC with the string "ABC”, specify text
replacement as follows:

textreplacement="ABC=@dq.ABC@dq."

HATS performs the following steps to process each <HATS:Component> tag that it
encounters in the JSP page.

1. HATS attempts to instantiate the component specified by the type attribute of
the tag. This attribute can be the fully qualified class name of a component
provided by HATS or one created by you.

Note: You must specify the fully qualified path, e.g.
com.company.division.product. MyComponent. If you want to be able to

18 IBM Host Access Transformation Services: Web Application Programmer's Guide

work with your custom component in HATS Toolkit, place the class file
in either the WEB-INF/classes directory or in a jar file in the
WEB-INEF/lib directory. If you prefer, you can import the source (java)
file into the project's source directory. If you have tested your custom
component and you do not wish to work with it in HATS Toolkit, you
must make the jar file available to your HATS application when it is
installed on WebSphere® Application Server.

2. HATS attempts to instantiate a widget object specified by the widget attribute
of the tag.

Note: You must specify the fully qualified path, like
com.company.division.product.MyWidget. If you want to be able to work
with your custom widget in HATS Toolkit place the class file in either
the WEB-INF/classes directory or in a jar file in the WEB-INF/lib
directory. If you prefer, you can import the source (;java) file into the
project's source directory. If you have tested your custom widget and
you do not wish to work with it in HATS Toolkit, you must make the jar
file available to your HATS application when it is installed on
WebSphere Application Server.

3. HATS invokes the recognize() method of the component object.

Each component has a different implementation of the recognize() method.
The recognize() method performs pattern recognition logic and host screen
data location. Component classes return an array of
com.ibm.hats.transform.ComponentElement objects. This array is the logical
representation of what was recognized by this component at the specified
region with the specified settings.

4. HATS performs text replacement by calling the doTextReplacement () method
on each ComponentElement object in the array that was returned by the
recognize() method of the component object.

5. HATS invokes the drawHTML() method of the widget. If an applicable
drawHTML () method cannot be found, the widget's draw() method is called. This
method simply returns (unless overridden by subclasses) the concatenation of
the toString() calls on each component element in the component element array
returned by the component.

The drawHTML() method renders the array of component elements as HTML
output. The drawHTML() method does this by returning a StringBuffer object
that contains its rendering of the supplied component element array. The
widget used for the component determines how the component elements are
rendered. Two widgets can take the same type of input. For example, the Link
widget and the Button widget can both take the same type of input, but their
drawHTML() methods generate different HTML content.

The following figure illustrates the flow of data from a region of the host screen,
through the component and widget, to the Web page.

Chapter 3. Creating custom components and widgets 19

Host Selected

Screen Region
Context c ¢ Component
Attributes omponen Settings
k2
Array of
Component
Elements

R

. Widget
nge} Settings

HTML
Output

Figure 1. Flow of data from host screen to Web page

Creating a custom host component

HATS provides a Create Component wizard to help you create custom
components. You can start the wizard in several ways:

* From the File > New > HATS Component menu in HATS Toolkit
* From the HATS > New > Component menu in HATS Toolkit

* From the context (right-click) menu of a HATS project, select New HATS >
Component

There are two panels of the Create Component wizard. On the first panel, you
provide the name of the project, the name of the new component, and the name of
the Java package for the component. Optionally, you can select a check box to
include stub methods that allow you to define a GUI panel for configuring the
settings used by the new component (see ["HATS Toolkit support for custom|
[component and widget settings” on page 26| for more information). On the second
panel, you enter the name you want displayed for the new component in the
HATS Toolkit and select the widgets to associate with the component. Widget
association is not necessary to complete the wizard. You can define the association

of components and widgets later. Refer to [“Registering your component or widget”|
for more information about associating components and widgets.

The following sections explain the required elements of a custom component that
the wizard provides:

* Extends the host component abstract class,
com.ibm.hats.transform.components.Component.

20 IBM Host Access Transformation Services: Web Application Programmer's Guide

If one of the HATS host components is very similar to what you need, it will be
easier to extend that component. See [“Extending component classes” on page 22|
for more information.

Adds the constructor method. This method, named for your component, must
accept a com.ibm.hats.common.HostScreen object. For example:

public MyComponent (HostScreen hostScreen) {
super(hostScreen);

The constructor should initialize parameters that the recognize() method will
require, based on the host screen object.

Adds the recognize() method.

public ComponentElement[] recognize(BlockScreenRegion region,
Properties settings)

The recognize() method has a different implementation in each host component
class. It accepts the region and settings passed to it and returns an array of
component element objects. You should implement this method to implement
your own pattern recognition logic.

The recognize() method must return an array of ComponentElement objects, as
defined in com.ibm.hats.transform.elements.ComponentElement. Each HATS
component returns a slightly different set of elements that extend
ComponentElement. For example, the SelectionListComponent returns an array
of SelectionComponentElement objects. This array of component elements is
passed to the specified widget, so be sure to return an array of elements that can
be accepted by the widget you want to use.

For a description of the arguments of this method, refer to the HATS API
References (Javadoc) for the recognize() method of the Component class. See
[“Using the API documentation (Javadoc)” on page 2.|

Adds the source code for the component into the Source folder of your project

Compiles the new component .java file, if you have Build Automatically
checked in the Rational SDP workbench preferences (Window > Preferences >
General > Workspace or Project > Build Automatically). If the component is
not compiled into a .class file, it is not available for use in the HATS Toolkit.

Registers the new component in the ComponentWidget.xml file. See
[your component or widget” on page 25| for more information about registering

components.

If you selected the check box to include HATS Toolkit graphical user interface
support methods, enabling you to modify the settings of the component, the Create
Component wizard adds the following methods:

Method to return the number of pages in the property settings:

public int getPropertyPageCount() {
return (1);

}
Method to return the settings that can be customized:

public Vector getCustomProperties(int iPageNumber, Properties properties,
ResourceBundle bundle) {
return (null);

}
Method to return the default values of the settings that can be customized:

public Properties getDefaultValues(int iPageNumber) {
return (super.getDefaultValues(iPageNumber));

}

Chapter 3. Creating custom components and widgets 21

See [“HATS Toolkit support for custom component and widget settings” on page 26|
for more information about the methods necessary to support your custom
component.

Note: If you want your component to work properly within Default Rendering,
you must set the consumed region (that is, the area of the host screen that
has been processed) on each component element that your component
returns, before returning the component element. This tells the Default
Rendering that this region of the screen has been consumed, or processed,
by a host component and should not be processed again. To set the
consumed region, use this method:

public void setConsumedRegion(BlockScreenRegion region)

Refer to the HATS API References (Javadoc) for the ComponentElement
class for more information. See [“Using the API documentation (Javadoc)” on|

Extending component classes

HATS provides a number of host component classes. You can extend any of the
host component classes that are found in the ComponentWidget.xml file by replacing
the statement public class MyCustomComponent extends Component in the created
java file for the new component with the class name of an existing component. For
example:

public class MyCustomComponent
extends com.ibm.hats.transform.components.CommandLineComponent

Note: Bidirectional components are stored in the
com.ibm.hats.transform.components.BIDI package. The names of
bidirectional classes for components are the same as regular components,
but they are followed by “BIDI”; for example,
com.ibm.hats.transform.components.BIDI.CommandLineComponentBIDI.

Each HATS component performs recognition of elements of the host screen in the
recognize() method. To extend a host component and accomplish the specific
recognition task you need, you can use either of these approaches:

* Extend one of the component classes that is provided by HATS and override the
recognize() method of the component. Somewhere in your recognize() method
you should add a call like super.recognize(region, settings); to invoke the
recognize() method of the class you extended. You can modify the process by
changing the settings before calling the superclass, or by manipulating the
output returned by the superclass.

* Extend one of the component classes that is provided by HATS and override the
recognize() method of the component. Instead of using the recognize() method
of the superclass, invoke the recognize() method of one of the other component
classes. This approach will be useful if you want to recognize a complex host
component that combines aspects of more than one of the HATS components.

The Create Component wizard generates a recognize() method that returns null,
which indicates that the host screen region is not recognized by the new
component. To change the custom component to act as the HATS component it is
extended from, whose elements contain all of the correct ComponentElements,
remove the "return null" from the java file and change the code in the component
code. For example:

22 IBM Host Access Transformation Services: Web Application Programmer's Guide

pubTic ComponentElement[] recognize(LinearScreenRegion region, Properties settings) {
ComponentElement [] elements = super.recognize(region, settings);
return elements;

}

HATS instantiates the custom component based on the setting of the type attribute
of the <HATS:Component> tag.

To edit the ComponentWidget.xml file, click the Navigator tab of the HATS Toolkit.
The ComponentWidget.xml file is shown at the bottom of the Navigator view of
your project. See [‘Registering your component or widget” on page 25| for more
information about the ComponentWidget.xml file.

Creating a custom HTML widget

HATS provides a Create Widget wizard to help you create custom widgets. You
can start the wizard in several ways:

* From the File > New > HATS Widget menu in HATS Toolkit
* From the HATS > New > Widget menu in HATS Toolkit

* From the context (right click) menu of a HATS project, select New HATS >
Widget

There are two panels in the Create Widget wizard. On the first panel, you provide
the name of the project, the name of the new widget, and the name of the Java
package for the widget. Optionally, you can select a check box to include stub
methods that allow you to define a GUI panel for configuring the settings used by
the new widget (see ["HATS Toolkit support for custom component and widget|
[settings” on page 26| for more information). On the second panel, enter the name
you want displayed for the new widget in the HATS Toolkit and select the
components to associate with the widget.

The wizard provides the following required elements of a custom widget:

* Extends the widget abstract class and implements the HTMLRenderer interface:
public class MyCustomWidget extends Widget implements HTMLRenderer.

See [“Extending widget classes” on page 24| for more information.
* Adds the constructor method:

public MyCustomWidget (ComponentElement[] arg0, Properties argl) {
super(arg0, argl);

* Adds the following method to generate HTML for Web project output.

public StringBuffer drawHTML() {

StringBuffer buffer = new StringBuffer(256);

HTMLElementFactory factory = HTMLElementFactory.newInstance(

contextAttributes, settings);

return (buffer);

}
The HTMLElementFactory class automatically generates any JavaScript needed
to present the widget. Refer to the HATS API References (Javadoc) for detailed
information about the HTMLElementFactory class and more examples of its use.
See [“Using the API documentation (Javadoc)” on page 2|

* Adds the source code for the widget into the Source folder of your project

* Compiles the new widget java file, if you have Build Automatically selected in
the Rational SDP workbench preferences (Window > Preferences > General >
Workspace) or the Project menu. If the widget is not compiled into a .class file,
it is not available for use in the HATS Toolkit.

Chapter 3. Creating custom components and widgets 23

* Registers the new widget in the ComponentWidget.xml file. See [“Registering your|
fcomponent or widget” on page 25| for more information about registering
widgets.

If you selected the check box to include HATS Toolkit graphical user interface
support methods, enabling you to modify the settings of the widget, the Create
Widget wizard adds the following methods:

* Method to return the number of pages in the property settings:

public int getPropertyPageCount() {
return (1);

}
* Method to return the settings that can be customized:

public Vector getCustomProperties(int iPageNumber, Properties properties,
ResourceBundle bundle) {
return (null);

}
* Method to return the default values of the settings that can be customized:

public Properties getDefaultValues(int iPageNumber) {
return (super.getDefaultValues(iPageNumber));

}

See [“HATS Toolkit support for custom component and widget settings” on page 26|
for more information about the methods necessary to support your custom widget.

Extending widget classes
HATS provides a number of widget classes. You can extend any of the widget
classes found in the ComponentWidget.xml file by replacing the
public class MyCustomWidget extends Widget implements HTMLRenderer

in the created java file for the new widget with the class name of an existing
widget, such as

public class MyCustomWidget extends
com.ibm.hats.transform.widgets.FieldWidget

Note: Bidirectional widgets are stored in the com.ibm.hats.transform.widgets.BIDI
package. The names of bidirectional classes for widgets are the same as
regular widgets, but they are followed by “BIDI”; for example,

com.ibm.hats.transform.widgets.BIDI.FieldWidgetBIDI

If you want to modify an existing widget, you must extend one of the existing
widget classes and override its drawHTML method. Refer to the HATS API
References (Javadoc) for details about widget interfaces and methods. See
[the APT documentation (Javadoc)” on page 2|

HATS instantiates the custom widget based on the setting of the widget attribute
of the <HATS:Component> tag.

Widgets and global rules

Widgets that present input fields should check whether the input field has already
been processed by a HATS global rule. When a host screen is received, HATS
searches it for host components that match global rules that are defined for that
HATS application. When your widget checks whether the input field has already
been processed by a HATS global rule, the call returns null if the input field has
not been processed. If the input field has already been processed according to a
global rule, the call returns the transformation fragment to which the input field

24 IBM Host Access Transformation Services: Web Application Programmer's Guide

has been transformed by the global rule. Your widget should output the fragment
rather than processing the component element. Examples are shown below for Web
applications:
String ruleReplacement =

RenderingRulesEngine.processMatchingElement (componentElement, contextAttributes);
if (ruleReplacement != null) {

buffer.append(ruleReplacement);
} else {

}

Add the above example to the drawHTML() method for the widget.

Registering your component or widget

Registering your custom components and widgets in the ComponentWidget.xml file
makes them available for use in the HATS Toolkit, such as in the Insert Host
Component wizard.

Host components must map to specific widgets. Custom host components can map
to any existing widget or to a custom widget. The Create a custom component or
widget wizards register your custom components and widgets in the
ComponentWidget.xml file, and associates components and widgets. When using the
wizards, if you did not associate your custom component or widget, you need to
edit the ComponentWidget.xml file and add the associations. To edit the
ComponentWidget.xml file, click the Navigator tab of the HATS Toolkit. The
ComponentWidget.xml file is shown at the bottom of the Navigator view of your
project.

Note: If you decide to delete a custom component or widget after it has been
registered, simply deleting the source code for the component or widget
from the Source folder of your project is not enough to completely remove
it. It is still referenced in the registry and there is no programmatic way to
remove it. You should remove it from the registry by editing the
ComponentWidget.xml file and deleting the references to the component or
widget.

Following is an example of the ComponentWidget.xml file that shows the
HATS-supplied Field Table component and one of the associated widgets, the
vertical bar graph widget.

<ComponentWidgetList>
<components>
<component className="com.ibm.hats.transform.components.FieldTableComponent"
displayName="Field table" image="table.gif">
<associatedWidgets>
<widget className="com.ibm.hats.transform.widgets.VerticalBarGraphWidget"/>
</associatedWidgets>
</component>
</components>

<widgets>
<widget className="com.ibm.hats.transform.widgets.VerticalBarGraphWidget"
displayName="Vertical graph" image="verticalBarGraph.gif" />
</widgets>
</ComponentWidgetList>

As you can see, there are two sections to this file: components and widgets.

Chapter 3. Creating custom components and widgets 25

The components section contains the list of all registered components. To register a
custom component and make it available to the HATS Toolkit, add a <component>
tag and the associated <widget> tags to the ComponentWidget.xml file. You must
supply a className, displayName, and the associated widgets.

className
Identifies the Java class that contains the code to recognize elements of the
host screen. The class name is usually in the form
com.myCompany.myOrg.ClassName.

displayName
Identifies the name by which your custom component is known and how
it appears in the list of components in the HATS Toolkit. This name must
be unique among the registered components. The form of the displayName
for a custom component is simply a string. Spaces are allowed in the
displayName.

image The image attribute identifies the image to use for your component when
it appears in the HATS Toolkit.

widget
Identifies the widgets that are associated with this component. There must
be a separate <widget> tag for each associated widget. All of the <widget>
tags for the component must be defined within the <associatedWidgets>
tag and its </associatedWidgets> ending tag. The <widget> tag within the
<associatedWidgets> tag contains only the className attribute, which
identifies the Java class that contains the code to link the widget to the
component. The class name is usually in the form
com.myCompany.myOrg.ClassName.

The widgets section contains the list of all registered widgets. To register a widget,
link it to a component, make it available for use in the HATS Toolkit, and add a
<widget> tag to the ComponentWidget.xml file. You must supply a className and a
displayName.

className
Identifies the Java class that contains the code to render the widget. The
class name is usually in the form com.myCompany.myOrg.ClassName.

displayName
Identifies the name by which your custom widget is known and how it
appears in the list of widgets in the HATS Toolkit. This name must be
unique among the registered widgets. The form of the displayName for a
custom widget is simply a string. Spaces are not allowed in the
displayName. However, you can use an underscore (_) in place of a
space.

HATS Toolkit support for custom component and widget settings

You can provide GUI support for modifying the settings of your custom
component and widget. This is useful if other developers will be using your
custom component or widget or you want to easily test different combinations of
settings using the preview features available in the HATS Toolkit. The base
component and widget classes implement the ICustomPropertySupplier interface.
This interface allows a component or widget to contribute setting information to
the HATS Toolkit. This information is used to render a panel by which the settings
of the component or widget can be modified. Not all settings need to be exposed
in the GUL

26 IBM Host Access Transformation Services: Web Application Programmer's Guide

The getCustomProperties() method returns a vector of HCustomProperty
customizable property objects. Each HCustomProperty object represents a setting
of the component or widget. The HATS Toolkit renders each HCustomProperty
objects based on its type. For example, an object of type

HCustomProperty. TYPE_BOOLEAN is rendered as a GUI checkbox.

The following sample code demonstrates how a widget can provide GUI support
for three of its settings (mySettingl, mySetting2, and mySetting3):

// Returns the number of settings panels (property pages) to be contributed
//by this widget. The returned value must be greater than or equal to 1 if
//custom properties will be supplied via the getCustomProperties() method.
public int getPropertyPageCount() {

return 1;
}

// Returns a Vector (1list) of custom properties to be displayed in the GUI
//panel for this component or widget.
public Vector getCustomProperties(int iPageNumber, Properties properties,
ResourceBundle bundle) {
Vector props = new Vector();

// Constructs a boolean property that will be rendered as a checkbox
HCustomProperty propl = HCustomProperty.new_Boolean("mySettingl",

"Enable some boolean setting", false, null, null);
props.add(propl);

// Constructs a string property that will be rendered as a text field
HCustomProperty prop2 = HCustomProperty.new String("mySetting2",
"Some string value setting", false, null,
null, null, null);
props.add(prop2);

// Constructs an enumeration property that will be rendered as a drop-down
HCustomProperty prop3 = HCustomProperty.new_Enumeration("mySetting3",

"Some enumerated value setting", false,

new String[] { "A", "B", "C" }, new String[]

{ "Option A", "Option B", "Option C" }, null, null, null);
props.add(prop3);

return props; }

\+*| Enable some boolean setting
Some string value setting |

Some enumerated value setting A "

The values supplied by the user of the custom component or widget will be
available in the componentSettings Properties object passed into the recognize()
method of the component or the widgetSettingsProperties object passed into the
constructor of the widget. The getCustomProperties() method may be called
during runtime to collect default values for settings.

For a description of the arguments and usage of these methods, refer to the HATS
API References (Javadoc) for the HCustomProperty class. See [“Using the API
[documentation (Javadoc)” on page 2|

Chapter 3. Creating custom components and widgets 27

28 IBM Host Access Transformation Services: Web Application Programmer's Guide

Chapter 4. Working with Dojo widgets

Customizing a HATS Dojo widget

When you first add a host component rendered by a HATS Dojo widget to a
transformation .jsp file, the component and widget selections are defined within a
<HATS:Component> tag. For more information about the <HATS:Component> tag,
see ["HATS component tag and attributes” on page 17|If the HATS default widget
definitions meet you needs, then this is all that is required.

The example below shows a Command line component rendered by a HATS
default Dojo Combo box widget.

boats=Boats
strgm=JK
90=Sign Off

Figure 2. HATS default Dojo Combo Box widget

In the transformation .jsp file this default component and widget are defined
within a <HATS:Component> tag as shown below.

<HATS:Component
type="com.ibm.hats.transform.components.CommandLineComponent"
componentSettings=""

row="20" col="7" erow="20" ecol="21"

alternate=""

widget="com.ibm.hats.transform.widgets.dojo.ComboBoxWidget"
widgetSettings="stringlListItems:Boats=boats;JK=strqm;Sign 0ff=90;

|autoSubmitOnSelect:false|useString:true|"
alternateRenderingSet="" textReplacement="" />

If you want to customize a HATS Dojo widget to add function in addition to what
is provided using the defaults, you must first transform the component and widget
definitions. To do this, select the <HATS:Component> tag, right-click, and select
HATS Tools > Transform for Dojo Editing. The Transform for Dojo Editing
wizard transforms the <HATS:Component> tag to a <HATS:Render> tag. The
example below shows the <HATS:Component> tag above after being transformed
to a <HATS:Render> tag.

<HATS:Render

<l-- Start of component settings -->

type="com. ibm. hats. transform.components.CommandLineComponent"
componentSettings=""

row="20" col="7" erow="20" ecol="21"

textReplacement="">

© Copyright IBM Corp. 2003, 2018 29

<!-- End of component settings -->

<l-- Start of ComboBoxWidget -->
<l-- com.ibm.hats.transform.widgets.dojo.ComboBoxWidget -->

<!-- Start of JSON data source -->

<!l-- Start of JSON data for the component element -->
<script>var HATSJSON <HATS:ElementId/> = <HATS:JSON/>;</script>
<!-- End of JSON data for the component element -->

<!-- Start of JSON widget settings -->

<script>var DOJOWidgetSettings <HATS:ElementId/> =

{"type":"ComboBoxWidget",

"value":{"stringListItems":"Boats=boats;JK=strgm;Sign 0ff=90;",
"autoSubmitOnSelect":"false","useString":"true"

}

bs
<!l-- End of JSON widget settings -->
</script>

<!-- End of JSON data source -->

<l-- Start of rendered widget -->

<div id="<HATS:ElementId/>">

<label for id="<HATS:ElementId/>_input"
id="<HATS:ElementId/>_label"></Tlabel>

<input id="<HATS:ElementId/> input"></input>

</div>

<!-- End of rendered widget -->

<l-- Start of data binding -->
<script type="text/javascript"
src="../common/hatsdojo/hsr_comboboxwidget.js">
</script>
<script type="text/javascript">
if (HATSJSON <HATS:ElementId/> && (HATSJSON <HATS:ElementId/>.value){
dojo.addOnLoad (function() {
var ulLabel = dojo.byId("<HATS:ElementId/> label");
var jsonData = (HATSJSON <HATS:ElementId/>;
var widgetSettings = DOJOWidgetSettings <HATS:ElementId/>;
var jsonlList = getListItemsFromJSONData(jsonData,
getListItemsFromHATSWidgetSettings (widgetSettings));
var storelList = new dojo.data.ItemFileReadStore(
{data: {identifier:"value",
items:createUniqueltemsList(jsonList,"value")
}

}
)s
var uComboBoxWidget = new dijit.form.ComboBox (
{name:getPosLengthStringFromJSONData(jsonData),
store:storeList,searchAttr:"fulTName"
}

"<HATS:ElementId/> input"

//1oad the JSON information and behavior into the Widget
bindJSONDataToComboBox (uLabel, uComboBoxWidget,
jsonData, widgetSettings);
setInputFieldFocus();
1
}

30 IBM Host Access Transformation Services: Web Application Programmer's Guide

</script>
<!-- End of data binding -->

<!l-- /com.ibm.hats.transform.widgets.dojo.ComboBoxWidget -->
<!-- End of ComboBoxWidget -->

</HATS :Render>

Notice in the example above, comments have been added to separate different
sections of the <HATS:Render> tag. These sections are described below.

Component settings

These settings are the same as on the <HATS:Component> tag. For descriptions,
see [“HATS component tag and attributes” on page 17|

Widget settings
The widget settings are contained in a JavaScript Object Notation (JSON) object

and used in the creation and binding of the Dojo widget in JavaScript for
behaviors, options, and default values.

<HATS:ETementId/> creates a unique identity for the rendered component element
at runtime.

<HATS:JSON/> creates the actual JSON object at runtime.

JSON data source

The JSON data source is created from the ComponentElements using a toJSON()
method. This JSON data is used to bind the Dojo widget to HATS data. More
information can be found in the APIs for the ComponentElements. See
[API documentation (Javadoc)” on page 2.

Rendered widget
The rendered widget is the base HTML and JavaScript that is changed at Dojo load
time to create a HATS Dojo widget.

Data binding

The data binding uses the settings and data provided to change the rendered
widget into a HATS Dojo widget. This typically includes providing the Dojo
widget event behaviors such as focus and selection, default values, and any
options, settings, or data necessary for correct operation and layout.

HATS Dojo widget customization examples

The following sections include examples of customized HATS Dojo widgets. For
more information about these and other Dojo widgets, see the Dojo Toolkit API
documentation at |http:/ /dojotoolkit.org /api /|

Combo box
This example shows various ways to customize a HATS Dojo Combo box widget.

Start by creating a Combo box widget, for example, for the From City input field
on the following host screen for the Flights Reservation System application.

Chapter 4. Working with Dojo widgets 31

http://dojotoolkit.org/api/

Flights Reservation System - Create Order 21:25:42 11/01/20 TORASBCC

Type choices, press F10 to Make Reservation
FLIGHT INFORMATION TICKET ORDER INFORMATION

Airline: Flight: 0000000 Order Number 2 PENDING

Date of Flight..: Customer

From City : Class of Service - First
Business
Depart Time g Economy

Number of Ticketscccceeevereccneeccnnaecenst

To City...:
Price § ...

Arrival Time

F2=Refresh F4=FROM Cities F5=TO Cities F6=Flights F7=Customers
Buffer length longer than record for member ORDERS.
e02cell+hatsvmplnode02+serverl/dojocustom

Figure 3. Host screen for the Flights Reservation System

When creating the Combo box widget use the Fill from string setting to specify
the List items to fill the drop-down list. In this example, use the following string
of city names:

Albany;ATbuquerque;Atlanta;Boston;Chicago;Dallas;Los Angeles;Miami;
Montreal;Raleigh;Rochester, MN;Salt Lake City;San Diego;Toronto;Vancouver;Washington DC

After you create the Input field component rendered with the Combo box widget,
the widget appears on the transformation .jsp file as shown below:

32 IBM Host Access Transformation Services: Web Application Programmer's Guide

=R

Albany
Albuquerque
Atlanta

Boston
Chicago
Dallas

Los Angeles
Miami
Montreal
Raleigh
Rochester, MN
Salt Lake City
San Diego
Toronto
Vancouver
Washington DC

Figure 4. Dojo Combo box widget with list of cities

When you preview or run this example, type the letters, al, into the Combo box.
Notice that all of the cities that contain the letters, al, are displayed in the
drop-down list.

al -
Albany

Albuquerque

Dallas

Montreal

Raleigh

Salt Lake City

Figure 5. Dojo Combo box widget with filtered list of cities

Chapter 4. Working with Dojo widgets 33

To customize the Combo box widget so that only cities that start with the typed
letters are display in the drop-down list, edit the transformation .jsp file and
perform the following steps:

1. Locate the <HATS:Component> tag in the transformation .jsp file. Below is the
source code that is created for this example.

<HATS:Component

type="com.ibm.hats.transform.components.InputComponent"
componentSettings="" textReplacement=""
row="12" erow="12" col="17" ecol="32"

widget="com.ibm.hats.transform.widgets.dojo.ComboBoxWidget"

widgetSettings="stringListItems:Albany;Albuquerque;Atlanta;Boston;Chicago;Dallas;
Los Angeles;Miami;Montreal;Raleigh;Rochester, MN;Salt Lake City;San Diego;
Toronto;Vancouver;Washington DC|
autoSubmitOnSelect:false|useString:true|" alternate="" alternateRenderingSet="" />

2. Select the <HATS:Component> tag, right-click, and select HATS Tools >
Transform for Dojo Editing. This transforms the <HATS:Component> tag to a
<HATS:Render> tag.

3. Referring to the Dojo API, for example, at jhttp://dojotoolkit.org/api/1.5/djjit/|
[form/ComboBox, you see that the queryExpr property controls how to match
entries in the drop-drop list. The expression, ${0}*, can be used to display only
list entries that start with the characters that the user types. Within the
<HATS:Render> tag, notice that the widget variable is named,
uComboBoxWidget. To customize your widget to display only cities that start
with the typed letters, following the setInputFieldFocus(); statement add the
statement shown below:

setInputFieldFocus();
uComboBoxWidget.queryExpr = "\§${0}+";

Note: Notice the backslash (\) before the queryExpr property ${0}+*. This
prevents the JSP translator from processing it as Expression Language
(EL) syntax.

Now when you preview or run this example, and type the letters, al, into the
Combo box, notice that only cities that start with these letters are displayed in the
drop-down list.

al
Albany
Albuquerque

Figure 6. Dojo Combo box using starting-with list of cities

The Combo box widget also supports validation of user-supplied input. Again,
referring to the Dojo API documentation, you see that the regExp property can be
used to restrict the format of user-supplied input. For example, if you want to
specify that no numbers are allowed in the user's input, following the statement
you added in the previous example, add the statement shown below:

uComboBoxWidget.regExp = "[*0-9]*";

In addition, if you want to add a prompt message and change the text of the
default invalid value message , add the final two statements shown below:

34 IBM Host Access Transformation Services: Web Application Programmer's Guide

http://dojotoolkit.org/api/1.5/dijit/form/ComboBox
http://dojotoolkit.org/api/1.5/dijit/form/ComboBox

setInputFieldFocus();

uComboBoxWidget.queryExpr = "\${0}*";

uComboBoxWidget.regExp = "[*0-9]*";

uComboBoxWidget.promptMessage = "Please enter the departure city.";
uComboBoxWidget.invalidMessage = "Numeric characters are not allowed.";

Now when you preview or run this example, notice your prompt message is
displayed when you position the cursor in the combo box.

Please enter the departure city.

Figure 7. Dojo Combo box prompt message

Type a value containing a number. Notice your invalid message is displayed, and
the combo box changes color and displays a warning icon.

3 Numeric characters are not allowed.

Figure 8. Dojo Combo box invalid message

Enhanced grid
This example shows how to change the HATS Enhanced grid widget to add a
single-selection radio button for each row in the table.

Start by creating an Enhanced grid widget, for example, for a table similar to the
one shown on the following host screen.

Chapter 4. Working with Dojo widgets 35

Work with Active Jobs ELCRTP68
01/21/11 15:57:41
CPU 5: .0 Elapsed time: 00:00:00 Active jobs: 309
Type options, press Enter.
2=Change 3=Hold 4=End 5=work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect...
Current
Opt Subsystem/Job User Type CPU% Function Status
ADMIN QTMHHTTP BCI .0 PGM-QZSRLOG SIGW
ADMIN QTMHHTTP BCI .0 PGM-QZSRHTTP SIGW
ADMIN BOB BCI .0 PGM-QYUNLANG TIMW
ADMIN BOB BCI .0 PGM-QYUNLANG TIMW
QINTER QSYsS SBS .0 DEQW
QPADEV0036 RICKH INT .0 CMD-WRKACTJOB RUN
QSERVER QSYS SBS .0 DEQW
QPWFSERVSD QUSER BCH .0 SELW
QPWFSERVSO QSECOFR PJ .0 DEQW
More. ..
Parameters or command
F3=Exit F5=Refresh F7=Find Fl0=Restart statistics
Fll=Display elapsed data Fl2=Cancel F23=More options F24=More keys

Figure 9. Work with Active Jobs host screen

After you create a Table component rendered with an Enhanced grid widget, the
widget appears on the transformation .jsp file as shown below.

Note: This figure shows the widget appearance when using the Dojo Claro theme.
The widget might appear differently when using a different Dojo theme.

Opt Subsystem/Job User Type CPU% Function Status
ZENDCORE QTMHHTTP BCI .0 PGM-QZSRHTTP DEQW
QINTER QSYS SBS .0 DEQW
QPADEV0004 WEBGUI INT .0 CMD-WRKACTJOB RUN
QPADEV0007 WEBGUI INT .0 MNU-MAIN DSPW
QPADEV0009 ASH INT .0 CMD-QSH DEQW
QZSHSH ASH BCI .0 PGM-QZSHSH TIMW
QvQMm QSsYs SBS .0 DEQW
QSERVER QSYS SBS .0 DEQW
QPWFSERVSD QUSER BCH .0 SELW

Figure 10. Dojo Enhanced grid widget

To change the indirectSelection plug-in to provide a single-selection radio button

for each row, edit the transformation .jsp file and perform the following steps:

1. Locate the <HATS:Component> tag in the transformation jsp file. Select the
tag, then right-click and select HATS Tools > Transform for Dojo Editing. This
transforms the <HATS:Component> tag to a <HATS:Render> tag.

2. Locate and change the grid variable as shown below:
var grid = new dojox.grid.EnhancedGrid(

autoWidth: true,
autoHeight: true,

structure: tableHeader,
plugins: {nestedSorting: true, dnd: true, indirectSelection: true},

36 IBM Host Access Transformation Services: Web Application Programmer's Guide

selectionMode: "single"

}s

document.createElement('div"')

)3

The Enhanced grid widget now appears on the transformation .jsp file as shown
below. In this example, single-selection radio buttons are added to each row in the
table. The selected row can be dragged to another location in the table.

Opt Subsystem/Job User Type CPU% Function Status
ZENDCORE QTMHHTTP BCI 0 PGM-QZSRHTTP DEQW
QINTER Qsys sBS 0 DEQW

QPADEV0004 WEBGUI INT 0 CMD-WRKACTJOB RUN

Tk QPADEV0007 WEBGUI INT 0 MNU-MAIN DSPW
QPADEV0009 ASH INT 0 CMD-QSH DEQW

QZSHSH ASH BCI 0 PGM-QZSHSH TIMW
Qmam QsyYs SBS 0 DEQW
QSERVER Qsys sBS 0 DEQW
QPWFSERVSD QUSER BCH 0 SELW

Figure 11. Dojo Enhanced grid widget with single row select

Filtering select
This example shows how to fill the drop-down list of a HATS Dojo Filtering select
widget from a global variable.

Start by creating a Filtering select widget, for example, for the Account number
input field on the following host screen for the Accounts application.
ACCOUNTS MENU

TO SEARCH BY NAME, ENTER SURNAME AND IF REQUIRED, FIRST NAME

SURNAME : (1 TO 18 ALPHABETIC CHRS)
FIRST NAME : (1 TO 12 ALPHABETIC CHRS OPTIONAL)

TO PROCESS AN ACCOUNT, ENTER REQUEST TYPE AND ACCOUNT NUMBER

REQUEST TYPE: (D-DISPLAY, A-ADD, M-MODIFY, X- DELETE, P-PRINT)
ACCOUNT g (10000 TO 79999)
PRINTER ID 8 (1 TO 4 CHARACTERS (REQUIRED FOR PRINT REQUEST))

ENTER DATA AND PRESS ENTER FOR SEARCH OR ACCOUNT REQUEST OR PRESS CLEAR TO EXIT

Figure 12. Host screen with account number input field

After you create an Input field component rendered with a Filtering select widget,
the widget appears on the transformation .jsp file as shown below:

Chapter 4. Working with Dojo widgets 37

-

W,

Figure 13. Dojo Filtering select widget

Edit the transformation .jsp file and perform the following steps:

1.

Locate the <HATS:Component> tag in the transformation .jsp file. Below is the
source code that is created for this example.
<HATS:Component
type="com.ibm.hats.transform.components.InputComponent"
componentSettings="" textReplacement=""
row="11" erow="11" col="22" ecol="26"
widget="com.ibm.hats.transform.widgets.dojo.FilteringSelectWidget"
widgetSettings="" alternate="" alternateRenderingSet="" />
Select the <HATS:Component> tag, right-click, and select HATS Tools >
Transform for Dojo Editing. This transforms the <HATS:Component> tag to a
<HATS:Render> tag.

Position the cursor after the last </script> tag in the .jsp source. Right-click and
select HATS Tools > Insert Global Variable.

On the Insert Global Variable window, select the global variable whose contents
contains the data to fill the Filtering select drop-down list. In this example, a
global variable named acctnumGV contains the text, 10011;10012;10013;10014,
which are valid account numbers for this application and are in the same
format, separated by a semicolon (;), used by the List items setting of the
Filtering select widget.

One result of using the Insert Global Variable tool is to add the following
import statement before the <html> tag in the .jsp source.

<%@page import="com.ibm.hats.common.*"%>

<html>

A second result is to add the following statement at the cursor location, in this
case, after the last </script> tag in the .jsp source.

<%= ((TransformInfo)request.getAttribute(CommonConstants.REQ TRANSFORMINFO))
.getGlobalVariable("acctnumGV", true).getString(0) %>

Within the <HATS:Render> tag, locate the creation of the jsonList variable.
Following this statement, add statements to create a gvString variable and then
add the items in the gvString variable to the jsonList variable. To initialize the
gvString variable, cut and paste the statement added by the Insert Global
Variable tool following the </script> tag. When complete, the code should be
as shown below.

var jsonList = getListItemsFromJSONData(jsonData, getListItemsFromHATSWidgetSettings(widgetSettings));
var gvString = '<%= ((TransformInfo)request.getAttribute(CommonConstants.REQ_TRANSFORMINFO))
.getGlobalVariable("acctnumGV", true).getString(0) %>';

jsonList = getListItemsFromString(gvString, jsonList);

var storelList = new dojo.data.ItemFileReadStore({data: {identifier:"value",
items:createUniqueltemsList(jsonList,"value")}});

The Filtering select widget now appears on the transformation .jsp file as shown
below. In this example, the drop-down list contains the set of valid account
numbers provided by the accountNum global variable.

38 IBM Host Access Transformation Services: Web Application Programmer's Guide

10011
10012 J\b
10013
10014

Figure 14. Dojo Filtering select widget using global variable

Number spinner

This example shows how to create a Number spinner Dojo widget to use for the
same Account number input field used in the Filtering select example. See
[Figure 12 on page 37|

Start by creating a HATS Text box Dojo widget to render the input field.

After you create an Input field component rendered with a Text box widget, the
widget appears on the transformation .jsp file as shown below:

1

Figure 15. Dojo Text box widget

Edit the transformation .jsp file and perform the following steps:

1. Add a dojo.require statement for the Number spinner widget as shown in the
example below.
<script type="text/javascript">
dojo.require("dojo.parser");
dojo.require("dijit.form.TextBox");
dojo.require("dijit.form.NumberSpinner");
</script>
2. Locate the <HATS:Component> tag in the transformation .jsp file. Below is the
source code that is created for this example.
<HATS:Component
type="com.ibm.hats.transform.components.InputComponent"
componentSettings="" textReplacement="" BIDIOpposite="false"
row="11" erow="11" col1="22" ecol="26"
widget="com.ibm.hats.transform.widgets.dojo.TextBoxWidget"
widgetSettings="" alternate="" alternateRenderingSet="" />
3. Select the <HATS:Component> tag, right-click, and select HATS Tools >
Transform for Dojo Editing. This transforms the <HATS:Component> tag to a
<HATS:Render> tag.

4. Within the <HATS:Render> tag, locate where the Text box widget is created.
Comment out (or remove) the creation of the Text box widget and create a
Number spinner widget as shown below.

// comment out the original text box code
// var ulnputWidget = new
// dijit.form.TextBox({"type":inputType},"<HATS:ElementId/> input");

Chapter 4. Working with Dojo widgets 39

var ulnputWidget = new
dijit.form.NumberSpinner({"smallDelta":1,"constraints":
{"min":10011,"max":10037,"places":0},"required":"true"},
"<HATS:ElementId/>_input");

The Number spinner widget now appears on the transformation .jsp file as shown

below. In this example, the min and max options are set to match the correct range
of account numbers for this particular application.

10011| &‘[T}

Figure 16. Dojo Number spinner widget

Using the Dojo TabContainer widget

40

HATS tabbed folder support is deprecated in HATS V9.6. While support for tabbed
folders continues for now, IBM reserves the right to remove this capability in a
subsequent release of the product. One alternative is to use the TabContainer Dojo
Layout widget to create tabs and use HATS widgets to render host components
within the tabs.

Using the Dojo TabContainer widget in a HATS Web project

The example that follows shows using the Dojo TabContainer widget in a HATS
Web project to render the data on the Display Report host screen in two tabs, one
using the HATS Dojo Enhanced grid widget and the other using the HATS Graph
widget.

To use the Dojo TabContainer widget in this example, follow these steps:
1. Create a HATS Web project with the Use Dojo technology option selected.

2. Start the Host Terminal, navigate to the first screen of the report and click
Create HATS Screen Customization on the toolbar.

IBM Host Access Transformation Services: Web Application Programmer's Guide

2

Host Terminal |Host Screen Preview

k|

é-a!ﬂavg @ |

Create HATS Screen Customization Display Report
Width .. .: 213 °

Column . .: 1
Control .
Line

PART NUMBER PART NAME

Women

orts - Men

orts - Women
000005
000006
000007
000008 J _ / Running
000009 32 p - Me ¢ Running

-+ OF DATA + + + + +

Bottom

Cancel F19=Left F20=Right F21=Split

[Pr1J[PF2 |[PF3_|[PF4 | [PF5 | [PF6 | [Enter | [PA1] [Attn | [Insert | [Backtab | [NewLine |

|PF7] IPFS] |PF9 | |PF10 | {PF11] [PF12] [Clear] |PA2] | SysReq | | Delete | |FIdExit J | NextPad]

Figure 17. Host screen to render using the TabContainer Dojo widget

10.

11.

12.

13.

14.

On the Screen Customization page, accept the defaults and click Next.

On the Screen Recognition Criteria page, specify how to identify the screen
and click Next.

On the Actions page, accept the defaults and click Finish. The transformation
jsp file opens in the Page Designer along with the Insert Host Component
wizard.

Click Cancel on the Insert Host Component wizard.

From the Palette view, under Dojo Layout Widgets, select TabContainer and
drop it to the transformation .jsp design area.

In the Insert Tab Container dialog, specify 2 for the Number of tabs and click
OK.

In the Properties view for the tabs, or the Source view, change the titles of the
tabs. Change Tabl to Table and Tab2 to Graph.

From the Palette view, under HATS Components, select Table (visual) and
drop it to the Table pane.

In the Insert Host Component wizard, on the Screen Region page, select the
screen region to be displayed as a visual table. For this example, select the
region including the four columns of data and the dashed lines above the first
row of data.

On the Rendering Options page, select Table (visual) from the Components
list and click the Component Settings button.

On the Settings - Table (visual) page, clear the Use project defaults box, set
Rows to exclude to 1, select Extract column header test from row above table
and click OK.

On the Rendering Options page, select Enhanced grid (Dojo) from the list of
widgets and click Finish.

Chapter 4. Working with Dojo widgets 41

42

15.
16.

17.

18.

19.

20.

21.

22.

23.
24.
25.
26.

27.

Press Ctr1-S to save your work so far.

From the Palette view, under HATS Components, select Table (visual) and
drop it to the Graph pane.

Note: If you have difficulty switching to the Graph pane in the Design view,
drop the Table (visual) component to before the </div> tag for the
Graph pane in the Source view.

In the Insert Host Component wizard, on the Screen Region page, select the
same region you selected for the Table pane.

On the Rendering Options page, select Table (visual) from the Components
list and click the Component Settings button.

On the Settings - Table (visual) page, clear the Use project defaults box, set
Rows to exclude to 1, select Extract column header test from row above table
and click OK.

On the Rendering Options page, select Graph (horizontal bar) from the list of
widgets and click the Widget Settings button.

On the Settings - Graph (horizontal bar) page:

a. Clear the Use project defaults box.

b. Set the Number of data sets to 1.

c. Type Inventory for the X-axis title.

d. Type Part Name for the Y-axis title.

e. Under Extract data point labels, set Column to 2.
f. Click Data sets.

On the Data Source Settings page, set Data set 1, column to 3, select Orange
in the Color drop-down, delete the legend label, and click OK.

On the Settings - Graph (horizontal bar) page, click OK.
On the Rendering Options page, click Finish.
Press Ctr1-S to save your work.

In the Page Designer, click the Preview tab to see a preview of your
transformation.

Run the project. You can adjust the height and width of the TabContainer
widget to get the desired display at runtime. Note that you must use fixed
height and width on the TabContainer widget in case the tabbed folder is not
displayed at runtime.

Below is the source for the table area containing the TabContainer in this example.

<l-- Insert your HATS component tags here. -->

<table width="783" height="500" cellspacing="0" cellpadding="0" border="0">
<l-- fim:table -->
<tbody>

<tr>
<td height="31" width="12"></td>
<td width="771"></td>
</tr>
<tr>
<td height="469"></td>
<l-- fim:cell -->
<td valign="top">
<div id="TabContainer" dojoType="dijit.layout.TabContainer"
tabposition="top" style="height: 469px; width: 771px">
<div dojoType="dijit.layout.ContentPane" title="Table" id="Tabl">
<HATS:Component
row="7" erow="16" col="14" ecol="77"
alternate="" alternateRenderingSet="" textReplacement=""
widget="com.ibm.hats.transform.widgets.dojo.EnhancedGridWidget"
widgetSettings=""
type="com.ibm.hats.transform.components.VisualTableComponent"
componentSettings="minRows:1|validateCharacterType:false|

IBM Host Access Transformation Services: Web Application Programmer's Guide

</div>

includePreviousLineAsHeader: true|columnBreaks: |[minColumns:1|
behaveAsInDefaultRendering:false|areaAsInDefaultRendering:false|
overrideRecognitionBehavior:false|evaluateBetterTableParameter:number0fCells|
excludeCols: |number0fTitleRows:0|columnDelimiter: |
betterTableHasLeastOfParameter:false|includeEmptyRows:true|

excludeRows:1|" />

<div dojoType="dijit.layout.ContentPane" title="Graph" id="Tab2">
<HATS:Component
row="7" erow="16" col="14" ecol="77"

alternate="" alternateRenderingSet="" textReplacement=""

widget="com.ibm.hats.transform.widgets.HorizontalBarGraphWidget"

widgetSettings=”extract$ource:co1|background1mage:|data$ource1Co1or:#ff8040|
backgroundColor: #ffffff|extractLabels:true|dataSource3Legend:Series 3|
dataSource2Color: #00ff00|yAxisTitle:Part Name|textAntialiasing:true|
TabelIndex:2|extractDataSetLabels:false|height:400|alternateText:Graph.jpg|
width:400|dataSource3:3|defaultFont:SansSerif-PLAIN-12|dataSource2:2|
dataSourcel:3|dataSetNumber:1|dataSource2Legend:Series 2|
dataSource3Color:#ff0000|dataSourcellegend: |xAxisTitle: Inventory|
axisColor:#000000|1abelColor:#000000|dataSetLabel Index:1|"

type="com.ibm.hats.transform.components.VisualTableComponent"

</div>
</td>
</tr>
</tbody>
</table>

componentSettings="minRows:1|validateCharacterType:false|
includePreviousLineAsHeader:true|columnBreaks: |[minColumns:1|
behaveAsInDefaultRendering:false areaAsInDefau]tRendering:fa]se|
overrideRecognitionBehavior:false|evaluateBetterTableParameter:number0fCells|
excludeCols: |number0fTitleRows:0|columnDelimiter: |
betterTableHasLeastOfParameter:false|includeEmptyRows:true|
excludeRows:1|" />

The following figures show this example TabContainer widget displayed at
runtime. On the Table tab notice the data rendered using the HATS Dojo Enhanced

grid widget.

& hatssample1

Table Graph
PART_NUMBER PART_NAME INVENTORY PRODUCT |
134 4-in Shorts - Men 102 Running
135 4-in Shorts - Women 200 Running
136 Baggy Shorts - Men 289 Running
137 Baggy Shorts - Women 103 Running
138 Strap Tank - Men 110 Running
139 Strap Tank - Women 130 Running
140 Running Shoes 222 Running
181 Layer Top - Women 176 Running
182 Layer Top - Men 189 Running
< »
& B 04/021
[_Reset] —peteutt— —etresh] pisconnect | Turm keyboarc ot] ’
Figure 18. Dojo Enhanced grid widget in Dojo TabContainer widget
Chapter 4. Working with Dojo widgets 43

44

On the Graph tab notice the data rendered using the HATS Graph (horizontal bar)
widget.

@ hatssample1

Table Graph
4-in Shorts - Men [FS
4-in Shorts - Women [S
Baggy Shorts - Men
Baggy Shorts - Women :|§
Strap Tank - Men 3
Strap Tank - Women :lg
Running Shoes :|§
Layer Top - Women :|§
Layer Top - Men :é

682

Part Name

0
00l
0;
00g

Inventory
& L D421

Figure 19. Graph (horizontal bar) widget in Dojo TabContainer widget

Using the Dojo TabContainer widget in a HATS portlet project

You can use the Dojo TabContainer widget in a HATS portlet project.

Note: HATS Dojo widgets are not supported in HATS portlets. When creating tabs
using the Dojo TabContainer widget, use HATS non-Dojo widgets to render
host components within the tabs.

To use the Dojo TabContainer widget in a HATS portlet project, follow the steps
similar to using the widget in a HATS Web project, with the following
considerations.

1. The Use Dojo technology option is not available when creating a HATS portlet
project. After a HATS portlet project is created, in the HATS Projects view
right-click on the project, select Properties -> Project Facets. Expand the Web
2.0 project facet and select Dojo Toolkit on WebSphere Portal 1.0. This makes
Dojo widgets available for selection on the Palette view.

2. When dragging the Dojo TabConatiner into the screen transformation, on the
Specify a jsp file for Dojo bootstrap entries page, select Generate in the portlet
jsp file, clear Generate portlet helper JavaScript classes in portlet application,
and click OK.

3. If dragging the Dojo TabContainer widget to the Design view does not cause
the widget to be added to the source, a workaround is to drag the widget to
the location after the <TD> tag in the Source view.

4. The following TabContainer <div> tag is created.

Note: The user interface for entering the number of tabs is not prompted and
the ContentPane is not generated.
<div dojoType="dijit.layout.TabContainer"

id="tabContainer_<portletAPI:namespace/>"
style="width: 500px; height: 100px"></div>

IBM Host Access Transformation Services: Web Application Programmer's Guide

5. To create tabs, drag ContentPane widgets (under Dojo Layout Widgets from the
Palette view) to before the </div> tag, resulting in the following source:

<div dojoType="dijit.Tayout.TabContainer"

id="tabContainer_<portletAPI:namespace/>"
style="width: 500px; height: 100px">

<div dojoType="dijit.Tlayout.ContentPane"
id="contentPane_<portletAPI:namespace/>"></div>

<div dojoType="dijit.Tlayout.ContentPane"
id="contentPane_<portletAPl:namespace/>"></div>

<div dojoType="dijit.Tlayout.ContentPane"
id="contentPane_<portletAPI:namespace/>"></div>

</div>

6. Add titles and insert a HATS component into each ContentPane widget.

Note: You can see the layout in Design view, but nothing is displayed in the
Preview view.

7. Export the portlet and deploy it to a Portal server.

Note: If necessary, you can adjust the height and width of the TabContainer
widget to get the desired display. Note that you must use fixed height
and width on the TabContainer widget in case the tabbed folder is not
displayed at runtime.

Below is example source for a TabContainer widget, containing three tabs,
rendering an IBM i Main Menu screen. The tabs contain the HATS Selection list,
Command line, and Function key host components, respectively.

<l-- Insert your HATS component tags here. -->

<table width="100%" height="100%" cellspacing="0" cellpadding="0" border="0">
<l-- flm:table -->
<tbody>
<tr>
<td>
<div dojoType="dijit.layout.TabContainer"
id="tabContainer_<portletAPI:namespace/>"
style="width: 500px; height: 400px">
<div dojoType="dijit.layout.ContentPane"
id="contentPane_<portletAPI:namespace/>" title="MenuOption">
<HATS:Component
row="5" erow="17" col="1" ecol="80"
alternate="" alternateRenderingSet="" textReplacement=
widget="com.ibm.hats.transform.widgets.SLRadioButtonWidget"
widgetSettings=""
type="com.ibm.hats.transform.components.SelectionListComponent"
componentSettings="" />
</div>
<div dojoType="dijit.layout.ContentPane"
id="contentPane_<portletAPI:namespace/>" title="CommandLine">
<HATS :Component
row="19" erow="21" col="1" ecol="80"
alternate="" alternateRenderingSet="" textReplacement=
widget="com.ibm.hats.transform.widgets.InputWidget"
widgetSettings=""
type="com.ibm.hats.transform.components.CommandLineComponent"
componentSettings="" />
</div>
<div dojoType="dijit.layout.ContentPane"
id="contentPane_<portletAPI:namespace/>" title="Functionkey">
<HATS :Component
row="22" erow="23" col="1" ecol="80"
alternate="" alternateRenderingSet="" textReplacement=""
widget="com.ibm.hats.transform.widgets.ButtonWidget"

widgetSettings=""
type="com. ibm.hats.transform.components.FunctionKeyComponent"
componentSettings="" />

Chapter 4. Working with Dojo widgets 45

</div>
</div>
</td>
</tr>
</tbody>
</table>

46 IBM Host Access Transformation Services: Web Application Programmer's Guide

Chapter 5. Programming in HATS Portlets

This chapter assumes that you are familiar with developing portlets for WebSphere
Portal. The [HATS User’s and Administrator’s Guide| explains how to create HATS
portlets and how to convert HATS Web projects into portlet projects. You must
have WebSphere Portal Toolkit installed on your HATS machine. With Portal tools,
you can create, manage, deploy, and run portlets in a Rational SDP environment.
WebSphere Portal Toolkit is installed with Rational SDP. When installing Rational
SDP, select the Portlet and Portal development tools check box.

You can develop HATS portlets that comply with the standard Java Portlet
Specification API (JSR 168 or JSR 286), hereafter referred to as the standard portlet
APIL HATS portlets that comply with the standard portlet API (JSR 168 or JSR 286)
are referred to as standard portlets. Where a distinction is required, JSR 168 or JSR
286 is noted.

Portlets can be targeted for WebSphere Portal v7.0 or WebSphere Portal v8.0.

The Portal API documentation (Javadoc) is installed with the toolkit and contains
information that is useful in performing the tasks that are described in this chapter.
You can use the Portal API in business logic or JSPs. A detailed example of using
HATS business logic with the Portal API, titled Portlet messaging with IBM Rational
Host Access Transformation Services (HATS), can be found on the [HATS Knowledgel

Standard portlets

The following topics are specific to standard portlets.

Using security
If you are using a credential vault with your WebSphere Portal, you can configure
your HATS portlets to work with the credential vault. HATS provides a Web
Express Logon plug-in called WebSphere Portal Credential Vault Credential
Mapper. This plug-in appears in the Add Credential Mapper plug-in window only
for a portlet project. This plug-in retrieves a passive user-password credential from
a vault slot.

The following classes are provided to aid the access to the Portal Credential Vault
for standard portlets.

* com.ibm.hats.portlet.cv.Credential VaultHelper
* com.ibm.hats.portlet.cv.UserPasswordCredential

The CredentialVaultHelper class has the following public methods. Note that the
getInstance() method returns a unique instance of CredentialVaultHelper.

public static CredentialVaultHelper getInstance();

public static String generateSlotName(String vaultId,String hostDestination,String hostAppId);

public String getSTotId(PortletRequest portletRequest, String slotName, int slotType);

public void setCredential(String slotld,UserPasswordCredential credential,PortletRequest portletRequest);
public UserPasswordCredential getCredential(String slotId,PortletRequest portletRequest);

The UserPasswordCredential class has the following public methods.

public UserPasswordCredential();
public UserPasswordCredential(String user,char[] password);
public void setUser(String user);

© Copyright IBM Corp. 2003, 2018 47

ugpor.htm
http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0
http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0

public void setPassword(char[] password);
public void setPassword(String password);
public String getUser();

public String getPassword();

Refer to the HATS API References (Javadoc) in the HATS Knowledge Center at
Ihttp: / /www.ibm.com/support/knowledgecenter/ SSXKAY_9.6.0| for detailed
information about the com.ibm.hats.portlet.cv.CredentialVaultHelper and
com.ibm.hats.portlet.cv.UserPasswordCredential classes.

You are responsible for creating and populating the vault slot for your users. The
Web Express Logon plug-in can be used directly with credentials created using the
setCredential() method of the com.ibm.hats.portlet.cv.Credential VaultHelper class,
because it observes the same naming convention for the slots. The vault slot name
can be generated using the generateSlotName() method of the
com.ibm.hats.portlet.cv.CredentialVaultHelper class, where you pass in the plug-in
parameter SLOT_ID, the host name, and the application name (use null if the
application name is not applicable, for example, when connecting to an IBM i
server). Note that the generated slot name is the SLOT_ID concatenated using
spaces with the host name, then the application name. The three elements of the
slot name are encoded to replace spaces with underscores. The actual vault slot ID
can then be retrieved using the getSlotld() method of the
com.ibm.hats.portlet.cv.Credential VaultHelper class, where you pass in the
PortletRequest, the slot name, and the SLOT_TYPE. Note that if the SLOT_TYPE is
2 or 3, the slot ID is equal to the slot name.

You can populate the vault slot with credentials that are specified in your business
logic or retrieved from another source. If you want to use the Portal user ID, you
can retrieve it using the WebSphere Portal Network Security plug-in. This plug-in
appears in the Add Network Security plug-in window only for a portlet project.

As described in [Chapter 9, “Creating plug-ins for Web Express Logon,” on page 93 |
Web Express Logon uses two types of plug-ins, Network Security plug-ins and
Credential Mapper plug-ins. Any of the Network Security plug-ins that are
supplied with HATS can be used in a HATS portlet. lists some possible
combinations of plug-ins you can use in your portlet:

Table 3. Plug-in combinations

Network Security plug-in Credential Mapper plug-in

WebSphere Portal NS plug-in Any supplied or custom CM plug-in or
WebSphere Portal Credential Vault CM
plug-in

None WebSphere Portal Credential Vault CM
plug-in

Custom NS plug-in Custom CM plug-in

The following steps are an example of how you can add Web Express Logon
capability to your portlet. Add this logic to the Start event for your HATS portlet.
When a user opens the portlet, check a global variable to determine whether the
user’s host credentials have already been supplied.

1. If the host credentials have already been supplied, show the user the first
screen to be displayed after authentication. This might be the screen that
appears at the end of the Web Express Logon logon macro.

48 IBM Host Access Transformation Services: Web Application Programmer's Guide

http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0

2. If the host credentials have not already been supplied, use the getCredential()
method of the com.ibm.hats.portlet.cv.CredentialVaultHelper class to request
the user’s credentials from the vault.

a. If the credentials are received successfully (the method does not return

null), do the following:

1) Set the global variable to show that the user’s host credentials have been
supplied.

2) Run the Web Express Logon logon macro.

b. If getCredential() returns null, do the following:

1) Present a sign-on screen to request the user’s information. This can be a
transformed host screen or an HTML page you have created for this
purpose.

2) Store the input in global variables and add it to the vault.

Extending the Entry portlet

You can extend the HATS standard portlet to provide additional functions or to
customize the portlet. For example, you can extend the portlet to provide
connection parameter and global variable overrides.

To extend the standard Entry portlet you must customize the Java class file. The
following steps are for extending the JSR 168 class file
(com.ibm.hats.portlet.Jsr168EntryPortlet). The same steps can be performed to
extend the JSR 286 class file (com.ibm.hats.portlet.Jsr286EntryPortlet).

1.

Use the new Java Class wizard to create the new Java class that extends
com.ibm.hats.portlet.Jsr168EntryPortlet.

a. Click File > New > Java > Class file.
b. Provide the package and the name of the new class. Make sure the

Superclass field contains the value
com.ibm.hats.portlet.Jsrl68EntryPortlet.

Modify the name of the portlet class in the portlet deployment descriptor.

a. Open the portlet.xml file in the Portlet deployment descriptor editor.

b. Replace the text in the <portlet-

class>com.ibm.hats.portlet.Jsrl68EntryPortlet</portlet-class> with the
following: <portlet-class>myPackage.myClass</portlet-class>; where
myPackage and myClass are values you entered in the new Java Class
wizard above.

The following example shows how to provide connection parameter and global
variable overrides with the extended portlet class:

1.
2.

Edit the Java source file of the extended portlet class.

Override the getInitParameters() method as follows:

public Properties getInitParameters(IRequest request)

{

Properties initParams = new Properties();
initParams.setProperty(com.ibm.eNetwork.beans.HOD.Session.HOST, "129.12.11.2");
initParams.setProperty(com.ibm.eNetwork.beans.HOD.Session.PORT, "623");
initParams.setProperty("hatsgv_userName", "some user");
initParams.setProperty("hatsgv_password", "xxxxx");
initParams.setProperty("hatssharedgv_someVariable", "zzzzz");

return initParams;

Chapter 5. Programming in HATS Portlets 49

Note: If you set the connection parameter or global variable overrides through the
extended portlet class and use the same overrides in Edit mode, the Edit
mode settings override the settings in the extended portlet class.

You must also configure the project's security settings to allow overrides of
your chosen connection parameters or global variables. To do this, use the
Connection Parameter Overrides panel and the Global Variable Overrides
panel in the Project Settings>Other tab. If you do not allow overrides in the
security panels, then any overrides set by extending the portlet class or by
using the portlet Edit mode are implicitly ignored.

Running Integration Objects

The processRequest() method is used to run Integration Objects in standard
portlets and special considerations have to be made for Integration Object
chaining.

For Integration Object chaining (see [“Integration Object chaining” on page 59) the
same connection must be used by all Integration Objects in the chain. When using
the processRequest() method to run the Integration Object, the key that represents
the connection for the Integration Object chain must be extracted from the first
Integration Object in the chain and set on subsequent Integration Objects in the
chain. The connection can be extracted from the first Integration Object using the
getHPubLinkKey() method and set on subsequent IOs using the
setHPubLinkKey().

The key representing the connection is passed across JSP as a parameter on the
HttpServletRequest object by adding a hidden input field to a FORM as shown:
<INPUT TYPE="HIDDEN" NAME="<%CommonConstants.HPUB_LINK_KEY%>"VALUE="<%=FirstInChainI0.getHPubLinkKey ()%>"/>

The subsequent JSP then retrieves it using the getParameter() method and sets it
on the subsequent Integration Object as shown:
<% MiddleInChainIO.setHPubLinkKey ((String)request.getParameter(CommonConstants.HPUB_LINK KEY)); %>

When the Forward To URL action is used to pass the connection being used by the
HATS Portlet to the Integration Object(s), the key representing the connection is
saved in the CommonConstants. HPUB_LINK_KEY attribute of the PortletRequest
object.

In this case, the user must edit the JSP that gets control from the Forward To URL
Action to retrieve the key from the PortletRequest object and set it for the first
Integration Object calling the setHpubLinkKey() method, as shown below:

<% ExampleI0.setHPubLinkKey ((String)request.getAttribute(CommonConstants.HPUB_LINK_KEY)); %>

The following statements also have to be added to the JSP that gets control from
the Forward To URL action, regardless of whether it's an input page that gathers
the data required by the Integration Object, or an output page that presents the
results after the Integration Object is run:

<%@ taglib uri="http://java.sun.com/portlet" prefix="portletAPI" %>
<portletAPI:defineObjects/>

If the JSP that gets control from the Forward To URL action is an input page, the
application developer is also required to modify the FORM statement by replacing
the use of the request and response objects with the portlet renderRequest and
renderResponse objects as shown below:

<FORM NAME="iojsp_ExampleIOOutput" METHOD="POST"
ACTION="'<%= renderResponse.encodeURL (renderRequest.getContextPath() + "/iojsp/ExampleIOOutput.jsp")%>"'>

50 IBM Host Access Transformation Services: Web Application Programmer's Guide

Using Web Express Logon

To run an Integration Object that is configured to use Web Express Logon in
standard portlets, you must ensure PortletRequest is available in the Integration
Object by calling setHPubPortletRequest(javax.portlet.PortletRequest) before
executing the processRequest() method. For example, to run the Integration Object
in a JSP page where the portlet renderRequest is available with the following
statements:

<%@ taglib uri="http://java.sun.com/portiet" prefix="portletAPI" %>
<portletAPI:defineObjects/>

add the following statement:
<% ExamplelO.setHPubPortletRequest(renderRequest); %>

before the statement:
<% ExamplelO.processRequest(); %>

Adding JavaServer Pages to a portlet

If you copy a .jsp file from a non-portlet project into a HATS portlet project, you
must convert it by right-clicking the file name and selecting Convert JSP for
Portal. You can convert several .jsp files at a time by selecting them in the tree
view. This menu item is available only if the Portal Toolkit has been installed and
the jsp is in a HATS portlet project and has not already been converted. If you
select several .jsp files and one or more of the files have already been converted,
they will be skipped.

Chapter 5. Programming in HATS Portlets 51

52 IBM Host Access Transformation Services: Web Application Programmer's Guide

Chapter 6. Programming with Integration Objects

Integration Objects are Java beans that encapsulate interactions with a host
application. If you have used IBM WebSphere Host Publisher, you are already
familiar with most aspects of Integration Objects, but you will need to learn about
how HATS enables you to work with Integration Objects. You do not need to be
familiar with Host Publisher to use Integration Objects in HATS.

[HATS User’s and Administrator’s Guide explains how to create an Integration Object
from a macro and how to create Web pages based on an Integration Object.
Integration Objects created using IBM WebSphere Host Publisher can be imported
into HATS and used in the same ways as Integration Objects that were created in
HATS Toolkit. This document describes these advanced uses of Integration Objects:

* Invoke an Integration Object from business logic. This process is described in
[“Example: Calling an Integration Object” on page 10.|

* Invoke an Integration Object from another WebSphere application. This process
is described in [“Using Integration Objects in a WebSphere Java EE application”|

|on page 86.|

* Create Web services based on one or several Integration Objects. This process is
described in |[Chapter 7, “Developing Web services,” on page 65.|

* Modify the Java code contained in the Integration Object. This is described in
[Chapter 8, “Integration Objects - advanced topics,” on page 81

A common class for accessing Integration Object information

The properties of an Integration Object can be accessed from WebSphere
applications. The calling program must know the name of the Integration Object
and the name of the variable. Sometimes, it is advantageous for the calling
program to be able to access properties that all Integration Objects share without
knowing the name of the Integration Object. The Java class,
com.ibm.HostPublisher.IntegrationObject. HPubCommon, is extended by all
Integration Objects. The class

com.ibm.HostPublisher.IntegrationObject. HPubHostAccess extends HPubCommon
and is common to all Host Access Integration Objects. The class
com.ibm.HostPublisher.IntegrationObject. HPubDBAccess extends HPubCommon
and is common to all Database Integration Objects. You can extract information
from these classes without knowing the name of the Integration Object. Introspect
these classes to find the names of the current properties that can be extracted using
the Integration Object methods. For information about these methods, see
[“Integration Object methods” on page 54

© Copyright IBM Corp. 2003, 2018 53

ugintobj.htm

Java class hierarchy of Integration Objects

Following is the Java class hierarchy of the default and customizable Integration
Objects:

HPubCommon + -- HPubHostAccess + -- HPubHODCommon -- HPubTemplateHODBean.Default
+ -- HPubTemplateHODBean.Customize

+ -- HPubDBAccess

Integration Object methods

54

HATS Integration Objects contain Java methods that you can use when
programming with Integration Objects. Some of the methods are common to all
Integration Objects. Some apply only to Host Access Integration Objects and some
apply only to Database Access Integration Objects. This section lists the methods
and a short description of the function of each method.

Common methods
These methods are common to all Integration Objects.

void doHPTransaction(HttpServletRequest req, HttpServletResponse resp)
throws BeanException
This execution method runs a HATS Integration Object or EJB Access Bean
from a servlet or JSP. If you use this method, HATS manages Integration
Object chaining. However, you must ensure that the Integration Objects in
your Web project are chained together in the correct order.

void processRequest() throws BeanException
This execution method runs an Integration Object or EJB Access Bean in
environments where there is no HttpServletRequest or
HttpServletResponse (environments other than a Web module). To run
chained Integration Objects using this method, additional programming is
required; refer to [“Integration Object chaining” on page 59,

Note: To run an Integration Object that is configured to use Web Express
Logon in standard portlets, you must ensure PortletRequest is
available in the Integration Object by calling
setHPubPortletRequest(javax.portlet.PortletRequest) before executing
the processRequest() method.

java.lang.String getHPubBeanName()
Returns the name of the current Integration Object or EJB Access Bean.

java.lang.String getHPubBeanType()
Returns a string representing the type of HATS Integration Object or EJB
Access Bean. The returned string can be one of the following:

HOD The bean was created using Host Access.
DB This bean was created using Database Access.

void setHPubErrorPage(java.lang.String value)
For Integration Objects that were created with Host Publisher Version 2.2.1
or Version 3.5, this method sets the name of the error page to be used. Use
this method only if you are running the HATS Integration Object or EJB
Access Bean from a servlet or JSP. Specify the name of your error page
relative to the location of your servlet or JSP.

IBM Host Access Transformation Services: Web Application Programmer's Guide

Note: This method is deprecated and cannot be used for Integration
Objects that were created with HATS or with Host Publisher after
Version 3.5.

java.lang.String getHPubStartPoolName()
Returns the name of the connection pool from which the Integration Object
acquired the connection.

void setHPubStartPoolName(java.lang.String value)
Sets the name of the connection pool from which the Integration Object
will acquire the connection. If the processRequest () business method of
the Integration Object is being used (for example, when the Integration
Object is deployed in an EJB container or as a Web service), the pool name
must be qualified with the HATS application name. For example, the pool
name should be my_hats_project/main.

java.lang.String getHPubXMLProperties()
Returns an XML formatted string that specifies the property names and
values for this Integration Object.

java.lang.String getHPubXMLProperties(HPubConvertToTableFormat.xsl)
Returns an XML formatted string that specifies the property names and
values for this Integration Object, and applies XML style sheet processing
to the returned string. See [“Applying XML style sheet processing to|
[Integration Object output” on page 61| for more information.

void setHPubSaveConnOnError(java.lang.Boolean flag)
Sets an indicator in the Integration Object that specifies that the connection
should not be destroyed if an error is detected while executing the
Integration Object. Instead, the connection should be saved so that it can
be passed to the HATS entry servlet and a default transformation can be
applied. The method should be used in combination with the predefined
AdvancedlOErrorPage.jsp. The connection can be transformed only if it
was obtained from the default connection pool. This method cannot be
used with EJB Access Beans or HATS Web services support.

int getHPubErrorOccurred()
Returns a nonzero value when an error has occurred.

java.lang.Exception getHPubErrorException()
Returns an exception object that describes the error that occurred; valid
only if HPubErrorOccurred is nonzero. This property is not contained in
the io_name_Output_Properties class that is generated by HATS Web
services support because parameters of type java.lang.Exception cannot be
serialized over Simple Object Access Protocol (SOAP.)

java.lang.String getHPubErrorMessage()
Returns a string containing the HATS code and message of the error that
occurred; valid only if HPubErrorOccurred is nonzero.

Host Access Integration Object methods

These methods can be used in Host Integration Objects created with Host
Publisher and imported into HATS, and with Integration Objects created in HATS
Toolkit. They cannot be used with Database Access Integration Objects created
with Host Publisher.

java.lang.String getHPubLinkKey()
This method returns the name of the key that represents the connection for

Chapter 6. Programming with Integration Objects 55

the Integration Object chain. This value should be obtained from the first
Integration Object in a chain after the Integration Object has run in a
non-Web container.

void setHPubLinkKey(java.lang.String value)
This method sets the name of the key that represents the connection for the
Integration Object chain. This value should be set for any chained
Integration Objects, other than the first Integration Object in the chain,
before they run in a non-Web container.

java.lang.String getHPubStartChainName()
This method returns the name of the start state label as defined when a
middle or last in chain Integration Object is created. This value is Null for
the first Integration Object in a chain or an Integration Object that is not
chained.

java.lang.String getHPubEndChainName()
Returns the stop state label as defined when a first in chain Integration
Object is created. This value is Null for the last Integration Object in a
chain or an Integration Object that is not chained.

java.lang.String getHPubScreenState()
This method returns the name of the last Host On-Demand macro screen
that was executed when the macro was stopped.

java.lang.String getHPubMacroMessage()
This method returns the value of the message tag of the last screen that
was executed in the current Host On-Demand macro screen.

public java.lang.String getHPubConnectionOverrides()
This method returns the connection overrides used by IO in the format
"keyl=valuel, key2=value2" or an empty string.

See [Specifying Connection Overrides| for further information.

public void setHPUBConnectionOverrides (String overrides)
This method specifies the connection overrides to apply when establishing
the host connection for the Integration Object. The connection overrides
have to be set before calling the processRequest() or doHPTransaction()
methods of the Integration Object. The connection overrides must be in the
format "keyl=valuel, key2=value2". This format is more convenient when
building Web services.

This method should be used with client programs based on HATS E]JB
access beans or Web Services clients generated to be used with HATS web
services.

If connection overrides have been specified, then when the Integration
Object's doHPTransaction() or processRequest() method is called a new
connection pool for the Integration Object is created. The new pool is
based on the Integration Object's original connection pool and the supplied
connection overrides. The Integration Object is automatically switched to
use the new connection pool. new pool name can be retrieved using the
Integration Object instance method getHPubStartPoolName().

See [Specifying Connection Overrides| for further information.

public void setHPubConnectionOverrides(Properties overrides)
This method sets the connection overrides to apply when establishing the
host connection for the Integration Object. The connection overrides have
to be set before calling the processRequest() or doHPTransaction() business
methods of the Integration Object establishing the host connection.

56 IBM Host Access Transformation Services: Web Application Programmer's Guide

When the Integration Object doHPTransaction() or processRequest()
methods are called, if there are connection overrides associated with the
Integration Object, a new connection pool for the Integration Object is
created based on the Integration Object's connection pool and the
connection overrides. The new pool name can be retrieved using the
Integration Object instance method getHPubStartPoolName().

See [Specifying Connection Overrides| for further information.

Database Access Integration Object methods

These methods can be used in Database Access Integration Objects that you created
with Host Publisher and imported into HATS. They cannot be used with Host
Access Integration Objects created with Host Publisher, and they cannot be used
with Integration Objects that were created in HATS Toolkit. Refer to the Rational
SDP documentation for information about accessing databases.

java.lang.String getHPubWarningOccurred()
Returns a nonzero value that indicates that a warning has occurred.

java.sql.SQILWarning getHPubSQLWarningException()
Returns a SQLWarning object of the warning that occurred; valid only if
HPubWarningOccurred is nonzero.

java.sql.SQLException getHPubSQLErrorException()
Returns a SQL Exception object of the error that occurred; valid only if
HPubErrorOccurred is nonzero and HPubErrorMessage indicates an SQL
error.

Specifying Connection Overrides

Connection overrides can be set dynamically or by the user. Specifying connection
overrides allows the user to build a generic application and customize some
settings based on the user running the application. However, for example, the
LUName being used for a 3270E connection or the workstationID for a 5250
connection can be set dynamically at runtime.

To specify connection overrides on Integration Objects, the user needs to modify
the code accessing the Integration Object to call the Integration Object instance
methods setHPubConnectionOverrides(Properties overrides) or
setHPubConnectionOverrides(String overrides) before calling the
doHPTransaction() or processRequest() methods. The method sets the connection
overrides for the Integration Object. When the Integration Object
doHPTransaction() or processRequest() methods are called, if there are connection
overrides associated with the Integration Object, a new pool for the Integration
Object is created based on the Integration Object's connection pool and connection
overrides in input.

The following is an example of JSP code using the
10.setHPubConnectionOverrides() method:

<% // Set the connection overrides

java.util.Properties overrides = new java.util.Properties();
overrides.setProperty("LUName", "LUOOOO1");

// Apply overrides to the I0
SignOn.setHPubConnectionOverrides (overrides);
SignOn.doHPTransaction(request,response);

// Get new I0 pool name to be used in following logic
String newPoolName = SignOn.getHPubStartPoolName();

0,
%>

Chapter 6. Programming with Integration Objects 57

To specify connection overrides on existing Integration Objects, without
recompiling the Integration Object, the new
com.ibm.HostPublisher.IntegrationObject. HPubPoolFactory class can be used. Its
static create() method can be used before calling the doHPTransaction() or
processRequest() methods. The method generates a new pool object by cloning the
pool object in input, and applying the connection overrides to the Host
On-Demand properties associated with it. The new pool name is returned and
must be set in the Integration Object using the setHPubStartPoolName() method.
The create() method returns null, if the pool name in input is invalid.

If the third parameter of the create method is null, then the pool name must be
qualified with the HATS application name. For example, the pool name should be
my_hats_project/main.

The two static methods that you can use are:

static String create(String poolName,
Properties overrides,
javax.servlet.http.HttpServletRequest httpServletRequest)

static String create(String poolName,
String overrides,
javax.servlet.http.HttpServletRequest httpServletRequest)

The methods create a new pool definition based on the named pool definition and
the supplied connection overrides.

The new pool name must be set on the Integration Object using the instance
method setHPubStartPoolName() before calling the doHPTransaction() or
processRequest() methods of the Integration Object establishing the host
connection.

The create() methods returns null if a connection definition for the supplied pool
name does not exist in the project.

If the third parameter of the create method is null, then the pool name must be
qualified with the HATS application name. For example, the pool name should be
"my_hats_project/main".

The connection overrides must be in the format "keyl=valuel, key2=value2" if the
second method signature is used. The first method uses a standard Java Properties
object to specify the overrides.

The following is an example of JSP code using the
com.ibm.HostPublisher.IntegrationObject. HPubPoolFactory,create() method:

<% // Set the connection overrides
java.util.Properties overrides = new java.util.Properties();
overrides.setProperty("LUName", "LUOGOO1");
// Create a new Pool based on a the default pool and the connection overrides
String poolName = SignOn.getHPubStartPoolName();
String newPoolName =
com.ibm.HostPublisher.IntegrationObject.HPubPoolFactory.create
(pooTName, overrides, request);
// If a valid poolName is returned, make the I0 use the new pool
if (newPoolName != null) {
SignOn.setHPubStartPoolName (newPoolName) ;
SignOn.doHPTransaction(request,response);
}

else {

58 IBM Host Access Transformation Services: Web Application Programmer's Guide

// Error condition

}

0,
%>

For chained Integration Objects to work correctly:

* If you use the setHPubConnectionOverrides() method, the connection overrides
must be set on the first Integration Object in the chain.

* If you are using the HPubPoolFactory.create() method, the newly created pool
name must be set on the first Integration Object in the chain.

With either example, the Integration Object uses a new Pool object created by
cloning the original Integration Object's pool and applying the connection
overrides. All the settings that apply to the original Integration Object's pool also
apply to the new pool, including pooling. Connection overrides can be different for
each user accessing an Integration Object. HATS runtime creates a pool object for
each user. These pools, created dynamically when connection overrides are
specified, are destroyed when the last active connection is terminated, providing
that pooling is not enabled. Connection override parameters specified on the
Connection Parameter Overrides page on the Other tab in the project settings
editor do not apply to Integration Objects.

Pools dynamically created when connection overrides are specified are
automatically destroyed when the last active connection is terminated, providing
that pooling is not enabled.

Integration Object chaining

Integration Object chaining can break up a complex application into multiple tasks,
with each task represented by an Integration Object. Chaining enables you to run
several Integration Objects in sequence, with each Integration Object depending on
the one before it for its input. Refer to [HATS User’s and Administrator's Guide| for an
introduction to Integration Object chaining. Integration Object chaining is quite
different from macro chaining in that each Integration Object in a chain is run to
completion before the next Integration Object in the chain takes control. Macro
chaining, using the PlayMacro action, terminates the current macro (the one in
which the PlayMacro action occurs) and begins to process the specified macro
screen of the target macro. There is no return to the calling macro. See
[Advanced Macro Guide| for more information on macro chaining.

Integration Object chaining is handled by HATS for the following;:

* HATS applications using Integration Objects or the corresponding EJB Access
Beans

* Custom JSPs or servlets that use Integration Objects or the corresponding EJB
Access Beans in a Web container

In these cases, the doHPTransaction execution method is used.

Properties that enable chaining must be retrieved and set for the following:
* EJB Access Beans running outside of a Web container
* Custom EJBs that use Integration Objects

In these cases, the processRequest execution method is used.

See [“Integration Object methods” on page 54| for a description of the
doHPTransaction and processRequest methods.

Chapter 6. Programming with Integration Objects 59

ugintobj.htm#chaining
ma_actions_part1.htm#ma_playmacro
ma_actions_part1.htm#ma_playmacro

HATS provides methods that enable you to extract the key that represents the
connection for the Integration Object chain from the first Integration Object in a
chain and to set the property for subsequent Integration Objects in the chain.
Properties that enable chaining for Web Services must also be retrieved and set.

To build an Integration Object chain using the processRequest method, do the
following:

1. Create an instance of the first Integration Object in the chain by calling its
constructor.

2. Invoke the methods for the Integration Object instance. You might want to
invoke methods to set properties of input variables. The naming convention
for setter methods is as follows:

I0Chainl.setXyz(String)

where Xyz is the name of your input variable.

3. Invoke the Integration Object to perform its task (running a macro, for
example), using the method:

I0Chainl.processRequest()
4. Check for errors by invoking:
10Chainl.getHPubErrorOccurred()

5. Extract and save the key that represents the connection for the Integration
Object chain:

String myLinkkey = I0Chainl.getHPubLinkKey();

6. Create an instance of the next Integration Object in the chain by calling its
constructor.

7. Set the key for this chained connection:
I0Chain2.setHPubLinkKey (myLinkkey) ;

8. Invoke the methods for this Integration Object instance. You might want to
invoke methods to set properties of input variables. The naming convention
for setter methods is as follows:

I0Chain2.setXyz(String)

where Xyz is the name of your input variable.
9. Invoke this Integration Object to perform its task, using the method:
I0Chain2.processRequest()
10. Check for errors by invoking:
10Chain2.getHPubErrorOccurred()

Repeat steps El through [10| for any and all subsequent Integration Objects in the
chain.

HATS-chained Web services

HATS-chained Web services require special consideration when used with
Integration Objects. If you use chained Integration Objects within a HATS Web
service, you create a stateful Web service. HATS runtime does not store data
between invocations of chained Integration Objects in the same Web service.
However, HATS runtime does require that the next in chain Web service invocation
be routed back to the same instance of the HATS runtime, so the next-in-chain
Integration Object uses the same Telnet connection.

60 IBM Host Access Transformation Services: Web Application Programmer's Guide

If you are deploying the stateful HATS Web service to a cluster, you can ensure

that this occurs in one of the following ways:

1. Create HATS Web services from EJB Access Beans. The HATS EJB is a stateful
session EJB, so the E]B client always interacts with the same HATS E]B
instance.

2. Configure the scope of the Web service to be session (either in the development
environment or after deployment), and use the
SESSION_MAINTAIN_PROPERTY in the Web service client runtime to
maintain the session across invocations, ensuring HTTP session affinity.

Applying XML style sheet processing to Integration Object output

HATS provides an XML style sheet, HPubConvertToTabTeFormat.xs1, that can be
applied to the getHPubXMLProperties() function call for tabular data. Applying the
style sheet produces an XML format including the table name and column names,
and reorders data in record format. To apply the HPubConvertToTableFormat.xs]l
style sheet, you must code the getHPubXMLProperties() function call as
getHPubXMLProperties ("HPubConvertToTableFormat.xs1").

For information on the methods that you can use in WebSphere applications, see
[“Integration Object methods” on page 54

DTD of XML data that is returned by getHPubXMLProperties()
method

When an XML style sheet is not applied to Integration Object output, the XML
data is returned with the following document type definition (DTD):

<?xml version=\"1.0\" standalone=\"yes\"?>

<IDOCTYPE com.ibm.HostPublisher.IntegrationObject.properties [

<!ELEMENT com.ibm.HostPublisher.IntegrationObject.properties
(inputProperties, outputProperties)>

<IATTLIST com.ibm.HostPublisher.IntegrationObject.properties name CDATA "'">

<!ELEMENT inputProperties (inputProperty=)>

<!ELEMENT inputProperty (value)>

<IATTLIST inputProperty name CDATA "">

<!ELEMENT outputProperties (outputPropertys*)>

<!ELEMENT outputProperty (valuex)>

<IATTLIST outputProperty name CDATA "" type (singlevalue|multivalue) 'multivalue'>

<!ELEMENT value (#PCDATA)>

1>

XML data using the getHPubXMLProperties() method
The following example shows sample data and the resulting XML data.

Table 4. Sample XML data

Name Phone Number
Mary Smith 765-4321
John Doe 123-4567

<com.ibm.HostPublisher.IntegrationObject.properties name=IntegrationObject.testl>
<inputProperties>

<inputProperty name=nameValue>

<value>%</value>

<inputProperty>

</inputProperties?

<outputProperties>

<outputProperty name=tablename type=multivalue>

<value>Mary Smith</value>

Chapter 6. Programming with Integration Objects 61

<value>John Doe</value>

</outputProperty>

<outputProperty name=tablelphonenumber type=multivalue>
<value>867-5309</value>

<value>123-4567</value>

</outputProperty>

<outputProperty name=databaseStatus type=singlevalue>
<value>0k</value>

</outputProperty>

<outputProperty name=hPubErrorOccurred" type=singlevalue>
<value>0</value>

</outputProperty>

<outputProperty name=hPubErrorException" type=singlevalue>
<value></value>

</outputProperty>

<outputProperty name=hPubErrorMessage" type=singlevalue>
<value></value>

</outputProperty>

</outputProperties>
</com.ibm.HostPublisher.IntegrationObject.properties>

All of the data is within multiple <value> tags with the <outputProperty> tags in
columnar order.

DTD of XML data that is returned by getHPubXMLProperties
(HPubConvertToTableFormat.xsl) method

When the XML HPubConvertToTableFormat style sheet is applied to Integration
Object output, the XML data is returned with the following document type
definition (DTD):

<?xml version=\"1.0\" standalone=\"yes\"?>

<IDOCTYPE com.ibm.HostPublisher.IntegrationObject.properties [

<!ELEMENT com.ibm.HostPublisher.IntegrationObject.properties
(inputProperties, outputProperties)>

<IATTLIST com.ibm.HostPublisher.IntegrationObject.properties name CDATA "">

<!ELEMENT inputProperties (inputProperty=)>

<IATTLIST inputProperty name CDATA "">

<!ELEMENT outputProperties (outputProperty*,Tablex)>

<IATTLIST outputProperty name CDATA "">

<IELEMENT Table (DataRecord=)>

<!ATTLIST Table name CDATA "">

<!ELEMENT DataRecord (outputProperty*)>

1>

XML data with HPubConvertToTableFormat style sheet applied
The sample data shown in [Table 4 on page 61| results in the following XML data:

<com.ibm.HostPublisher.IntegrationObject.properties name=IntegrationObject.testl>
<!-- Input Properties -->

<inputProperties>

<inputProperty name=inputName>

%

<inputProperty>
</inputProperties?
<outputProperties>

<!-- Table (multivalued) output property -->

<Table name=tablel>

<DataRecord>

<outputProperty name=Name>Mary Smith</outputProperty>
<outputProperty name=phoneNumber>867-5309</outputProperty>
</DataRecord>

<DataRecord>

<outputProperty name=Name>John Doe</outputProperty>
<outputProperty name=phoneNumber>123-4567</outputProperty>

62 IBM Host Access Transformation Services: Web Application Programmer's Guide

</DataRecord>
</Table>

<!-- Single Valued output Property -->
<outputProperty name=databaseStatus>
Ok

</outputProperty>

<!-- Standard Error output Properties -->

<outputProperty name=hPubErrorOccurred">0</outputProperty>
<outputProperty name=hPubErrorException"></outputProperty>
<outputProperty name=hPubErrorMessage"></outputProperty>
</outputProperties>

</com.ibm.HostPublisher.IntegrationObject.properties>

Chapter 6. Programming with Integration Objects 63

64 IBM Host Access Transformation Services: Web Application Programmer's Guide

Chapter 7. Developing Web services

Web services are self-contained applications, based on open standards, that can be
invoked over the Web. Web services provide a way for applications to connect and
interact easily and efficiently. They can be building blocks of applications used
within your enterprise or provide a point of interaction with other enterprises.
Because their interfaces are defined according to standards, Web services can
interact with other applications that are not Java-based.

You can use HATS Web service support to create service-oriented architecture
(SOA) assets that provide standard programming interfaces to business logic and
transactions contained within your host applications. These core business tasks can
be reused as standard Web services that participate as an integral part of your
business process integration plan. Use your core business services as building
blocks to develop new internal applications or to integrate with applications
outside your enterprise. Your host-based business tasks can then be included in
your SOA solutions with IBM SOA Foundation products, such as IBM WebSphere
Process Server, IBM WebSphere Enterprise Service Bus, and others.

Using a combination of tools from HATS Toolkit and Rational SDP, you can create
Web services from Integration Objects or from EJB Access Beans. With HATS you
can create traditional Web services defined by Web Services Description Language
(WSDL) files as well as Representational State Transfer (RESTful) Web services.

Note: You cannot use an Integration Object that is configured to use Web Express
Logon in a Web service.

Traditional Web services use several standard ways to formulate information:
Simple Object Access Protocol (SOAP), Web Service Description Language (WSDL),
Universal Description, Discovery, and Integration (UDDI). This book refers to but
does not explain these protocols. You can find information about them by opening
the Rational SDP documentation (click Help > Help Contents from any Rational
SDP perspective) and searching for Web service.

RESTful Web services provide an alternative to the traditional WSDL-style Web
service implementation and may be more appropriate for your particular needs.
RESTful Web services use HTTP instead of SOAP, and may require less bandwidth,
which may be useful for devices like mobile phones and PDAs. In addition, use of
the HTTP caching infrastructure (with the HTTP GET method) may improve
performance for data that can be cached.

Note: Traditional Web services may continue to be more appropriate for cases
where a formal description (the WSDL file) of the Web service interface
must be established.

RESTful Web services use a stateless architecture and are viewed as resources
rather than function calls. They use well-formatted URIs to identify resources, use
HTTP method protocols to do create, retrieve, update, and delete (CRUD)
activities, and use HTTP header information to define the message formats. For
more information about RESTful Web services, see the Rational Business Developer
Knowledge Center at http://www.ibm.com/support/knowledgecenter /SSMQ79|
and search for Architectural styles in web services.

© Copyright IBM Corp. 2003, 2018 65

http://www.ibm.com/support/knowledgecenter/SSMQ79

Usually you create HATS Web services from Integration Objects that you have
already built, tested, and deployed. This chapter assumes that you have one or
more successfully tested Integration Objects that you want to include in a Web
service. However, you can start from the very beginning by opening your host
terminal, recording one or more macros, creating Integration Objects from the
macros, and testing the Integration Objects. Refer to |[HATS User’s and)
[Administrator’s Guide] for information about creating an Integration Object from a
macro.

Creating traditional (WSDL-based) Web services

You must decide whether you want your Web service to comply with the Web
Services Interoperability (WSI) standard. This will govern which Web service
runtime you use for the creation of your Web services. If you accept the default,
IBM WebSphere runtime, the resulting Web service will be WSI-compliant.

You must follow certain naming conventions when creating Web services using
IBM WebSphere runtime. These include:

* Method names must begin with a lower case letter.
* Class names must begin with an upper case letter.

* If a method or class name contains an underscore followed by a letter, the letter
must be an upper case letter.

* If a method or class name contains a number followed by a letter, the letter must
be an upper case letter.

Keep these naming restrictions in mind when creating macro names, prompt
names, and extract names during macro creation. For more information on naming
restrictions, refer to the Rational SDP documentation.

Creating a Bottom-up Web service from Integration Objects

The instructions in this section assume that you want to create a Web service that
has input and output properties and methods similar to all of the properties and
methods in an Integration Object. Or, in other words, you want the signature of the
Web service that you create to be similar to that of an Integration Object contained
in the Web service. This scenario is called a Bottom-up Web service.

To create a Web service, begin from the HATS Projects view and follow these steps:

1. Expand the project that contains the Integration Objects you wish to use, then
expand the Source folder and the IntegrationObject folder.

2. Right-click any Integration Object in your project and select Create Web
Service Support Files.

3. The Create Web Service Support Files wizard enables you to select any project
as the source of the Integration Objects you will include in a Web service. The
project in which you clicked will be the default. Provide a class name for the
HATS Web service support files. The class name must begin with an uppercase
letter. This class is referred to as your wrapper class for this Web service. This
wrapper class enables you to select a logical group of Integration Objects or EJB
Access Beans to include in one Web service. For example, you might select to
include all the Integration Objects in a chain in the wrapper class. To see a list
of Integration Objects and select the ones to include, click Next.

4. Select the resources (Integration Objects and EJB access beans) that you want to
include in your Web service. If you want to change the input and output
properties that are exposed by the Web service for a given resource, select the
resource and click Properties.

66 IBM Host Access Transformation Services: Web Application Programmer's Guide

ugintobj.htm
ugintobj.htm

5. On the Choose Properties page, select the input and output properties that you
want exposed in the Web service. If you wish, you can provide an alias name
for the property in the Alias Name field. Use the Select All, Deselect All, and
Select Default buttons to help in selecting the properties. Click OK.

Notes:

a. Defaults for single Integration Objects and EJB access beans are all macro
prompts for input properties and all macro extracts for output properties.

b. Defaults for chained Integration Objects are all macro prompts plus
hPubLinkKey (which is required) for input properties and all macro extracts
plus hPubLinkKey (which is required) for output properties.

c. Defaults for chained EJB access beans are all macro prompts plus
hPubLinkKey and hPubAccessHandle (both of which are required) for input
properties and all macro extracts plus hPubLinkKey and hPubAccessHandle
(both of which are required) for output properties.

d. To specify that Integration Object connection overrides be exposed to the
Web service, you must select the appropriate properties, for example the
hPubConnectionOverrides or hPubStartPoolName properties, which are not
selected by default. For more information, see [“Specifying Connection|
[Overrides” on page 57.|

e. For more information about the use of other Integration Object methods, see
[Chapter 6, “Programming with Integration Objects,” on page 53/
f. For considerations when using bidirectional language support, see
[of bottom-up Web services|in the HATS User’s and Administrator’s Guide.
6. Click Finish. HATS creates a set of classes to be used in creating the Web
service. The following classes appear in the HATS Projects view in the
Source\webserviceclasses folder:

* The wrapper class that you specified. This wrapper class contains an
io_nameProcessWS() method for each Integration Object that you chose to
include in the wrapper class. When you create the Web service using
Rational SDP wizards, you are creating a Web service that contains all of the
io_nameProcessWS() methods that are contained in the wrapper class.

* Input properties classes (io_name_Input_Properties) for each Integration
Object that you included in the wrapper class. The input properties class is
used to set all the necessary inputs for the Integration Object.

* Output properties classes (io_name_Output_Properties) for each Integration
Object that you included in the wrapper class. All of the Integration Object
output properties can be retrieved from the output properties class.

7. At this point, you are ready to create a Web service using the tools provided in
the IBM Rational SDP. Familiarize yourself with the procedure and the options
available to you by reviewing the Bottom-up Web services development
chapter. At a minimum, you should start the server that you are going to
deploy the Web service to before continuing to create the Web service. These
instructions assume that you are going to use separate steps to create your Web
service, test your Web service, and create your Web service client.

8. Expand the webserviceclasses package. Right-click the wrapper class that you
created, and select Web Services > Create Web service. The Web service type
defaults to Bottom up Java bean Web service. Make sure that you keep this
default. You can click Finish here or select other options that best meet your
requirements, as described in the Rational SDP documentation. If you select the
option, Generate WSDL file into the project, Rational SDP creates a Web
Services Description Language (WSDL) file that describes the interfaces to your
Web service. You can use this WSDL file to test your Web service using the Web

Chapter 7. Developing Web services 67

ugbidi.htm#bidi_web_service
ugbidi.htm#bidi_web_service

services explorer in the HATS project view. If you do not select this option, you
can use a dynamically generated WSDL file to test your Web service from
Services view of the Java EE perspective. When you have made all your
choices, click Finish.

9. Go to[‘Testing your Web service with Web Services Explorer”| for information
about testing your Web service before you create a client.

Testing your Web service with Web Services Explorer

You can test your Web service in Rational SDP before you create a client
application.

Before you start this process, ensure that the HATS runtime is started. You can do
this by starting your server, and then, in the Servers view, choose the EAR file in
which your Web service is contained, right-click, and choose Restart.

If you selected the option to Generate WSDL file into the project, see step Im

page 63' in the list under [“Creating a Bottom-up Web service from Integration|

Objects” on page 66, the WSDL file that you created is located within your HATS

project:

* If you are creating a Web service for an IBM WebSphere JAX-RPC or JAX-WS
runtime, it is located in the Web Content/WEB-INF/Web Service Definitions
folder.

* If you created a Web service for an Apache Axis runtime, it is located in the
Web Content/Web Service Definitions folder.

This folder contains a file called wrapper.wsdl, where wrapper is the name you gave
to your wrapper class. Right-click this file and select Web Services > Test with
Web Services Explorer.

In the right pane of the Web Services Explorer, you will see the io_nameProcessWS()
methods for each Integration Object or EJB Access Bean included in the Web
service. Click any method name to test that Integration Object. You will see a list of
the input properties that you can specify for the Integration Object. This list is
based on the Integration Object's io_name_Input_Properties class. The only
properties that must be set are the prompts that you defined when you recorded
your macro. The other properties can be left blank. Refer to the Rational SDP
documentation for information about using the WSDL view of Web Services
Explorer to explore and test your Web service definition.

If you did not select the option to Generate WSDL file into the project, see step
on page 67]in the list under [“Creating a Bottom-up Web service from Integration|
Obijects” on page 66, you can use a dynamically generated WSDL file to test your
Web service from Services view of the Java EE perspective.

Creating a Web service client
Next you can create a client application to use the Web service. Do the following:

1. Expand your project, then expand the folder appropriate for the Web service
runtime you selected when you created the Web service. The WSDL file that
you created is located within your HATS project:

* If you created a Web service for an IBM WebSphere JAX-RPC or JAX-WS
runtime, it is located in the Web Content/WEB-INF/ Web Service Definitions
folder.

* If you created a Web service for an Apache Axis runtime, it is located in the
Web Content/Web Service Definitions folder.

68 IBM Host Access Transformation Services: Web Application Programmer's Guide

This folder contains a file called wrapper.wsdl, where wrapper is the name you
gave to your wrapper class.

2. Right-click this file and select Web Services > Generate Client to start the Web
Service Client Proxy wizard. On the first page of the wizard, you can choose all
defaults except for the client project. You should choose a project other than the
project that contains the Web service.

Note: The specified Client project and the Ear project need to have the same
server target as the chosen Server.

You can click Finish at this point, or continue through the wizard. Refer to the

Rational SDP documentation for information about the options in this wizard.

3. If you chose to Test the Web service, the wizard creates sample JSP pages, and
runs the sample on the server. The output of the sample JSP pages will be
displayed in the web browser. To run the sample, in the Methods frame, click
the io_nameProcessWS link to test a particular Integration Object or E]B Access
Bean. In the Inputs frame, set the required inputs, as described in
[your Web service with Web Services Explorer” on page 68]The Result frame
will display the outputs.

The sample pages are created in your client project. In the Navigator view,
expand your client project, and expand Web Content and samplewrapperProxy.
In the samplewrapperProxy folder are the sample JSP pages. You can run the
sample by running the TestClient.jsp file on the server. Double click
Result.jsp to open it in the JSP editor. You can examine the code and copy
code from the sample into a HATS business logic class, which can be run from
a screen customization to invoke your Web service and use the output in a
transformation or in some other way.

Creating a Top-down Web service that includes Integration
Objects

Your development task may involve creating a top-down Web service, where you
have been given a WSDL that has the specified signature of the Web service. Your
task is to create the Web service implementation, part of which involves interacting
with an existing terminal application.

If the input parameters in the WSDL either contain the required input properties
for an Integration Object, or based on the input parameters, you can write code
that will set the required Integration Object input properties, you can use
Integration Objects directly in your Web service implementation.

The Rational SDP contains tools to create a skeleton Java bean from an existing
WSDL. You can then interact with Integration Objects directly from this skeleton
Java bean. Refer to [Chapter 6, “Programming with Integration Objects,” on page 53|
to learn more. The one caveat is that you should use the processRequest () method
to invoke the Integration Object in a Web services run time environment.

Refer to [Chapter 1, “Introduction,” on page 1|

Programming with Web Services Integration Objects and EJB
Access Beans

Integration Object chaining with Web Services

If your application requires chaining, your client code must retrieve the
hPubLinkKey property from the first Integration Object in the chain, and set it for
all subsequent Integration Objects in the chain.

Chapter 7. Developing Web services 69

EJB Access Bean chaining with Web Services

If your application requires chaining, your client code must retrieve both the
hPubLinkKey and the hPubAccessHandle properties from the first EJB Access Bean
in the chain, and set them for all subsequent EJB Access Beans in the chain.

Special considerations with chaining Web Services

If you use chained Integration Objects within a HATS Web service, you are
creating a stateful Web service. HATS runtime does not store data between
invocations of chained Integration Objects in the same Web service. However,
HATS runtime does require that the next in chain Web service invocation is routed
back to the same instance of the HATS runtime so that the next in chain IO will
use the same Telnet connection.

If you deploy a stateful HATS Web service using JAX-RPC support to a cluster, to
enable all Integration Objects in the chain to use the same Telnet connection, do
one of the following:

* Create the HATS Web services from EJB Access Beans. The HATS EJB is a
stateful session EJB, so the EJB client always interacts with the same HATS EJB
instance.

* Configure the scope of the Web service to be session (this can be done in the
development environment or after deployment), and use
SESSION_MAINTAIN_PROPERTY in the Web service client runtime to maintain
the session across invocations, therefore ensuring HTTP session affinity. For
more information about stateful Web services, see the following article:

http:/ /www-128.ibm.com/developerworks/webservices/library / ws—tip—|
stateful.html] Note that WebSphere APAR PK35259 may be required, as it fixes
an issue with SESSION_MAINTAIN_PROPERTY.

If you deploy a stateful HATS Web service using JAX-WS support to a cluster, to

enable all Integration Objects in the chain to use the same Telnet connection, do

one of the following;:

* Create the HATS Web services from EJB Access Beans. The HATS EJB is a
stateful session EJB, so the EJB client always interacts with the same HATS EJB
instance.

* Use HTTP session management support following the directions found in the
WebSphere Application Server Knowledge Center at |Ettp:/ / |
publib.boulder.ibm.com /infocenter/wasinfo/v8r0/index.jsp?topic=/|
com.ibm.websphere.express.doc/info/exp/ae/twbs_enablesecconvcluster.html|

Updating Web services

The Update wizard is only enabled for Web service classes that have been created
with HATS 7.0.0.2 or later. If you are using an earlier version, then you must
update manually.

To update the HATS Web service support classes, do the following:
1. Select an existing Web service wrapper class to update.

2. The Update Web service wizard is invoked with the Web service class
preselected.

3. If you do not need to change the selection of Integration Objects or EJB Access
Beans included in the Web service, you can select Finish to regenerate the Web
service support classes, otherwise select Next to continue to the next page of
the wizard.

70 IBM Host Access Transformation Services: Web Application Programmer's Guide

http://www-128.ibm.com/developerworks/webservices/library/ws-tip-stateful.html
http://www-128.ibm.com/developerworks/webservices/library/ws-tip-stateful.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/twbs_enablesecconvcluster.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/twbs_enablesecconvcluster.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/twbs_enablesecconvcluster.html

4. Modify the list of resources (Integration Objects and EJB access beans) included
in the Web service wrapper class . If you want to change the input and output
properties that are exposed by the Web service for a given resource, select the
resource and click Properties.

5. On the Choose Properties page, select the input and output properties that you
want exposed in the Web service. If you wish, you can provide an alias name
for the property in the Alias Name field. Use the Select All, Deselect All, and
Select Default buttons to help in selecting the properties. Click OK.

Notes:

a. Defaults for single Integration Objects and EJB access beans are all macro
prompts for input properties and all macro extracts for output properties.

b. Defaults for chained Integration Objects are all macro prompts plus
hPubLinkKey (which is required) for input properties and all macro extracts
plus hPubLinkKey (which is required) for output properties.

c. Defaults for chained EJB access beans are all macro prompts plus
hPubLinkKey and hPubAccessHandle (both of which are required) for input
properties and all macro extracts plus hPubLinkKey and hPubAccessHandle
(both of which are required) for output properties.

d. To specify that Integration Object connection overrides be exposed to the
Web service, you must select the appropriate properties, for example the
hPubConnectionOverrides or hPubStartPoolName properties, which are not
selected by default. For more information, see [“Specifying Connection|
[Overrides” on page 57

e. For more information about the use of other Integration Object methods, see
[Chapter 6, “Programming with Integration Objects,” on page 53/

f. For considerations when using bidirectional language support, see
[of bottom-up Web services|in the HATS User’s and Administrator’s Guide.

6. Click Finish.

The HATS Web service support files are regenerated and compiled. Note that you
still must use the Rational SDP wizards to update your Web services once you
have updated the HATS Web services support files.

Web services for JAX-WS runtime considerations and

limitations

If you plan to create HATS Web services for the JAX-WS runtime, be aware of the

following:

* When you generate a test client, the web_service_nameService java file is created
with a hardcoded, absolute location of the WSDL file. If you deploy the test
client to a different machine, update the file to contain the correct WSDL file
location.

* The WSDL file that you elect to generate for your Web service contains a URL
location of the Web service. This URL points to the local host and port. Update
the local host and port in the URL when you deploy the Web Service to another
server.

Creating RESTful Web services

As with traditional Web services, RESTful Web services are created from HATS
Integration Objects and their input and output properties. With traditional Web
services, you define the location and input and output properties of the Web
service resources in a WSDL file. However, with RESTful Web services, you define

Chapter 7. Developing Web services 71

ugbidi.htm#bidi_web_service
ugbidi.htm#bidi_web_service

access to the Web service resources using URIs to represent the resources, HTTP
methods to operate on the resources, and HTTP header information to define the
message formats.

In the following figure is an architectural view of HATS support for RESTful Web
services.

1.

The HATS RestServlet receives from a client an HTTP request with URI and an
HTTP method.

The RestServlet routes the request by mapping information in the URI and the
HTTP method to a JAX-RS resource for an Integration Object.

The JAX-RS resource receives the request, reads the parameters in the request,
initializes the Integration Object, sets prompts (input properties), and runs the
Integration Object.

The JAX-RS resource receives extracts (output properties) from the Integration
Object, generates a response, and returns it to the RestServlet.

The RestServlet responds to the client.

@ JAX-RS — Integration

resource_101 Object: 101

®

Client — HATS JAX-RS Integration
1en RestServiet | < resource 102 +T—> Object: 102

JAX-RS Integration
resource 103 € > Object: 103

Figure 20. HATS RESTful Web service architecture

Note: To run a HATS Integration Object, the client must call one Integration Object

at a time. For chained Integration Objects, the client must call one
Integration Object, then call the next, passing the link key, or you must
modify the wrapper to call one Integration Object after another, passing the
link key.

HATS provides tools you can use to create JAX-RS resources for your Integration
Objects, and mappings so that URIs and HTTP methods in HTTP requests can be
mapped to the correct JAX-RS resources.

Creating RESTful service JAX-RS resources

To create a JAX-RS resource for an Integration Object, in the HATS Projects view:

1.

Expand the project that contains the Integration Object you wish to use, then
expand the Source folder and the IntegrationObject folder.

Right-click the Integration Object and select Create RESTful Service Files.
The Create RESTful Service Files wizard opens.

On the Specify JAX-RS Resource class name and Integration Object page, in
the Name field, specify the name of the JAX-RS resource class to generate in
the Source folder. The name must follow generic Java class name syntax.

72 IBM Host Access Transformation Services: Web Application Programmer's Guide

4.
5.
6.

10.

11.

12.

Optionally select whether to Overwrite resources without warnings.
Click Next.

On the Configure JAX-RS Resource class page, in the URI Suffix field, specify
a suffix to create the complete URI to use in mapping to your JAX-RS
resource. For example, if the host where the HATS RESTful service is installed
is www.myHost.com, the HATS project (application) name is myApp, and the
URI Suffix is mySuffix, then the resulting URI for the JAX-RS resource is
http:/ /www.myHost.com:9080/myApp /rest/mySuffix.

Note: The combination of URI plus HTTP method must be unique among all
of the JAX-RS resources that you define. If not, the JAX-RS runtime
picks only one of the resource functions to invoke based on a priority
algorithm using the combination of consumes and produces content
types (see [‘Customizing RESTful service JAX-RS resource methods” on|
lpage 75).

By default, Enable Swagger is selected. You can disable it if you do not want
to include Swagger support. By selecting Copy URI Suffix to Swagger Api
Value, you can automatically copy the URI Suffix value to the Swagger Api
Value field. To enter a new value, you can uncheck the Copy URI Suffix to
Swagger Api Value. The value of this field will be added to respective service
as annotation @Api by HATS toolkit.

URI Suffix: si

Enable Swagger
Copy URI Suffix to Swagger Api Value
Swagger Api Value:

Methods

Method Name HTTP Method Consumes Produces Integration Object Add

Click the Add button to add at least one method to the resource class. The
Define JAX-RS RESTful Service Method wizard opens.

In the HTTP Method field, from the drop-down list, select the HTTP method
(GET, POST, PUT, DELETE) you want to use in combination with the URI to
map to this JAX-RS resource method.

Select the Use Integration Object box if you want this method to invoke an
Integration Object. Clear the box if you want to generate an empty method
without the Integration Object handling code. Do this to create your own
customized method.

If you select the Use Integration Object box, from the drop-down list, select

the Integration Object you want this method to invoke.

If Enable Swagger is selected in the previous step, then you can enter text in
Swagger Api Operation Value field. This field will be ignored if no value is
entered by you. The value of this field will be added to respective method as
annotation @ApiOperation by HATS toolkit.

Chapter 7. Developing Web services 73

Configure JAX-RS Resource class
Configure HTTP method, URI and JAX-RS methods. -

URI Suffix: Test

v Enable Swagger

V| Copy URI Suffix to Swagger Api Value

Swagger Api Value:
Methods
Method Name HTTP Method Consumes Produces Integration Object Add
invokeSignOn GET application/xml, application/... SignOn

o

Define RESTful Service Method

Choose HTTP method and Integration Object &
| Configure HTTP method mapping and specify whether to use Integration Object or not. :\J
|
HTTP Method: GET [T
e Use Integration Object: SignOn ﬂ
@G
@A nfk
@P Swagger Api Operation Value: |
pul

Note: You can access HATS RESTful Swagger description document using the
path /<HATScontextroot>/rest/swagger.json

13. Click Next.

14. If you selected the Use Integration Object box, the Choose Integration Object
properties page displays. Select the input and output properties that you want
exposed as parameters for the RESTful Web service. If you wish, you can
provide an alias name for the property in the Alias Name field. Use the Select
All, Deselect All, and Select Default buttons to help in selecting the
properties.

Notes:

a. Defaults for single Integration Objects and EJB access beans are all macro
prompts for input properties and all macro extracts for output properties.

b. Defaults for chained Integration Objects are all macro prompts plus
hPubLinkKey (which is required) for input properties and all macro
extracts plus hPubLinkKey (which is required) for output properties.

c. Defaults for chained EJB access beans are all macro prompts plus
hPubLinkKey and hPubAccessHandle (both of which are required) for
input properties and all macro extracts plus hPubLinkKey and
hPubAccessHandle (both of which are required) for output properties.

d. To specify that Integration Object connection overrides be exposed to the
Web service, you must select the appropriate properties, for example the
hPubConnectionOverrides or hPubStartPoolName properties, which are
not selected by default. For more information, see [“Specifying Connection|
[Overrides” on page 57/

€. For more information about the use of other Integration Object methods,
see [Chapter 6, “Programming with Integration Objects,” on page 53

15. Click Next.

16. On the Configure JAX-RS Resource Method page, defaults are set that reflect
the HTTP method and Integration Object you selected. For more information

about these method settings and how to customize them, see

74 IBM Host Access Transformation Services: Web Application Programmer's Guide

17.
18.

19.

20.

[RESTful service JAX-RS resource methods.”| For considerations when using
bidirectional sessions, see [Support of RESTful Web services|in the HATS User’s
and Administrator’s Guide.

Click Finish.

On the Configure JAX-RS Resource class page, in the Methods section, are
listed the methods you have added. Use the Add button to add another
method, use the Edit button to edit the selected method, and use the Remove
button to remove the selected method.

After you click Finish, HATS creates the JAX-RS resource file and stores it in
the Source\restfulserviceclasses folder in your project.

In addition, HATS adds the JAX-RS resource to the list of services for the
RestServlet servlet to scan for a match. This list is maintained in the
WEB-INF/wink-resources.Ist file viewable in the Navigator view.

Notes:

a. HATS creates the WEB-INF/wink-resources.Ist file when the first JAX-RS
resource is created in a project.

b. HATS updates the default WAR class loader policy of your HATS
application to Single class loader for application.

c. HATS also adds the JAX-RS facet to the project.

d. If you create a JAX-RS resource file manually, not using the Create RESTful

Service Files wizard, you must update the WEB-INF/wink-resources.Ist file
to map the JAX-RS resource to the RestServlet servlet.

Updating RESTful service JAX-RS resources

To update a JAX-RS resource for an Integration Object, in the HATS Projects view:

1.
2.

Expand the Source folder and the restfulserviceclasses folder.

Right-click the JAX-RS resource and select Update RESTful Service Files. The
Update RESTful Service Files wizard opens.

You can make changes for the JAX-RS resource by following the instructions
described in [“Creating RESTful service JAX-RS resources” on page 72

Customizing RESTful service JAX-RS resource methods

If you want to customize a HATS RESTful service JAX-RS resource method, for
example, to handle content types other than application/xml and application/json,
or to define method parameters, follow these steps:

1.

Follow the instructions for [“Creating RESTful service JAX-RS resources” on|
[page 72| or [“Updating RESTful service JAX-RS resources.”]

On the Configure JAX-RS Resource class page, click Add to add a new
method or click Edit to edit the highlighted method.

Set the HTTP method, Integration Object, and Integration Object properties as
appropriate.

On the Configure JAX-RS Resource Method page, in the Method Name field,
specify the Java method name.

In the URI Sulffix field, add any additions to the path, and add any definitions
for URI parameters as PathParam parameters in the format {name}.

In the Return Type field, add or change the Java type returned by this
method. The default is restfulserviceclasses.JAX-RS resource class name+
_resource method name+ _Output_Properties.

In the Consumes field are listed the content types (Internet media types, or
MIME types) supported for input in the HTTP request body. Add or change

Chapter 7. Developing Web services 75

ugbidi.htm#bidi_restful_jax_rs

the content types of request messages supported. Multiple content types can
be specified separated with commas. HATS supports application/xml and
application/json as defaults. This is only applicable for HTTP Methods POST
or PUT. The HTTP GET and DELETE methods do not have HTTP request
bodies and do not support the Consumes field. For these methods, input must
instead be supplied as URI parameters with content type
application/x-www-form-urlencoded. For more information, see
[content” on page 77

8. In the Produces field are listed the content types supported for output in the
HTTP response body. Add or change the content types of response messages
supported. Multiple content types can be specified separated with commas.
HATS supports application/xml and application/json as defaults. For more
information, see [“Handling content” on page 77

9. In the Method Parameters fields add or change the input parameters
supported by this method. Use the Add, Edit, and Remove buttons to create,
modify, and delete the input parameters for this method.

10. If you create or modify an input parameter, on the Method Parameter page
complete the following fields. For more information see the JAX-RS
specifications at |http:/ /jcp.org/aboutava/communityprocess/ final /jsr311 /|

h’ndex.htm l

Parameter Type
Select from the drop-down one of the following types as defined in
the JAX-RS specification:

* Entity - a non-annotated parameter, for example, a normal Java
object, extracted from the request entity body.

* CookieParam - parameter value is to be extracted from an HTTP
cookie.

* FormParam - parameter value is to be extracted from an HTML
form parameter.

* HeaderParam - parameter value is to be extracted from an HTTP
header.

* MatrixParam - parameter value is to be extracted from a URI matrix
parameter.

* PathParam - parameter value is to be extracted from the request
URI path.

* QueryParam - parameter value is to be extracted from a URI query
parameter.

* Context - parameter value is to be extracted from a Web application
context.

Parameter Name
Name of the parameter. Used for CookieParam, FormParam,
HeaderParam, MatrixParam, PathParam, and QueryParam.

Default Value
Default value if the parameter cannot be found. Used for
CookieParam, FormParam, HeaderParam, MatrixParam, PathParam,
and QueryParam.

Type Input parameter Java type

Name Input parameter name

Note: Each JAX-RS resource must contain at least one method. If the Use
Integration Object option is selected, the method contains the HATS

76 IBM Host Access Transformation Services: Web Application Programmer's Guide

http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html

RESTful wrapper that maps the input and output parameters for the
Integration Object and invokes the Integration Object. By default, HATS
maps the parameters to the Integration Object as follows:

* For HTTP PUT or POST, and the input parameter is mapped as a single
entity (Entity).

¢ For HTTP GET or DELETE, and the input parameter(s) are mapped as
query parameters (QueryParam).

* The output return type is always an entity (Java object).

If you modify the method parameters as described in this section, HATS
does not map the parameters for the Integration Object and does not
perform other handling for the modified Java method. In this case, you must
edit the JAX-RS resource class file and implement this yourself.

Handling content

When you create a JAX-RS resource method for an Integration Object, the
Consumes field specifies the content types (Internet media types, or MIME types)
the JAX-RS resource method supports as input in a HTTP request body. The
Produces field lists the content types the JAX-RS resource method supports as
output in a HTTP response body.

The content type of an HTTP request or response is defined in the Content-Type
HTTP header field. An HTTP request can also use the Accept HTTP request header

field to specify the content types it can accept in the response.

For more information, see the references below:

» For HTTP specifications, see fhttp://www.w3.org/Protocols/|

+ For JAX-RS specifications, see |http:/ /jcp.org/about]ava/communityprocess/|
[final /jsr311/index.html}

+ For JSON format definitions, see fhttp://www.json.org /|

Content type examples

The following examples summarize handling content in HTTP requests and
responses. These examples are intended to show concepts and not exact HTTP
protocols.

HTTP GET and DELETE requests specify all of their input parameters on the URI
using standard encoding. There is no body in such requests. The content type of
the requests for these is always x-www-form-urlencoded, since that is all that is
allowed for GET and DELETE requests by the HTTP protocol. The client indicates
what content type it can accept in the response by supplying an Accept header.

In the GET request below, the parameter is passed as a query string on the URL
The content type acceptable in the response is specified in the Accept header field
as application/xml.

GET http://www.myHost.com:9080/myApp/rest/myCustomer?name=john%20doe
Accept: application/xml

All HTTP responses carry their data in their body, no matter what kind of request
prompted the response. Responses begin with header fields. The Content-Type
header field in a response tells the client what type of data is contained in the
body below. HTTP allows many different content types in responses, but HATS
JAX-RS supports only application/xml and application/json. After the header
fields and a blank line, the body begins, and contains the data in the specified
format.

Chapter 7. Developing Web services 77

http://www.w3.org/Protocols/
http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html
http://www.json.org/

In the GET response below, the Content-Type header field specifies the type of data
contained in the response body.

Content-Type: application/xml

<customer>
<firstname>John</firstname>
<lastname>Doe</Tastname>
<accountnumber>111111</accountnumber>
</customer>

By convention, a POST request typically asks to create something. The data
required to fulfill the request is carried in the request body. The Content-Type
indicates to the server the format of the request data. The Accept header again
specifies the desired response format.

In the POST request below, the content type is specified in the Content-Type
header field as application/xml and the content is supplied in the request body.
The Accept header field specifies the acceptable format for data in the response, as
application/json.

POST http://www.myHost.com:9080/myApp/rest/myCustomer

Content-Type: application/xml
Accept: application/json

<customer>
<firstname>Jane</firstname>
<lastname>Doe</Tastname>
<accountnumber>222222</accountnumber>
</customer>

In the POST response below, notice the format of the response does not have to
match the format used in the request.

Content-Type: application/json

{"message":{
"type": "resultCode",
"value": "Jane Doe account created successfully"

b

The HATS JAX-RS output format rule is to respond using the format specified in
the Accept HTTP request header unless the client specifies a format using the URI
query parameter alt as shown below:

POST http://www.myHost.com:9080/myApp/rest/myCustomer?alt=application/xml

Customizing the response header

Sometimes you might need to customize the response header of your RESTful
service. For example, to handle response headers that use Shift_JIS encoding, you
must modify the REST resource class file to change the return type to
javax.ws.rs.core.Response and change the content type or custom header. For
example, if you want to use Shift_JIS as the default charset in a POST method with
a FormParam, perform the following steps:

1. Specify WebSphere Application Server encoding as Shift_JIS. For information
about how to do this, see |http:/ /publib.boulder.ibm.com/infocenter /wasinfo/ |
v8r0/index jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/|
trun_svr_utf.htm

2. Change the return type of the method in the REST resource class to
javax.ws.rs.core.Response. For example, change the following code from:

78 IBM Host Access Transformation Services: Web Application Programmer's Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/trun_svr_utf.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/trun_svr_utf.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/trun_svr_utf.html

@POST

@Consumes ({"application/x-www-form-urlencoded"})

@Produces ({"application/xm1"})

public xxx_Output_Properties invoke(@FormParam("id") String id, @FormParam("yyy") String yyy)

return outputToClient;

@POST

@Consumes ({"application/x-www-form-urlencoded"})

@Produces ({"application/xm1"})

public javax.ws.rs.core.Response invoke(@FormParam("id") String id, @FormParam("yyy") String yyy)

return javax.ws.rs.core.Response.ok(outputToClient, "application/xml;charset=Shift_JIS").build();

HTTP status codes
The following HTTP status codes are returned from HATS RESTful Web services:

200
400
404
405

406

415

500

Successful. No error.
General error. For example, incorrect content in the request body.
URI not found.

Method not allowed. For example, the service supports HTTP POST and
PUT, but the URI requests HTTP DELETE.

Unsupported response format is requested. Supported response format is
returned in the Accept header.

Unsupported request format. The format used for the request in invalid.
Used for HTTP POST and PUT when an unsupported value is supplied in
the request's Content-Type HTTP header field.

Internal server error, for example an Integration Object execution error.
Throws WebApplicationException.

For more information about HTTP status codes, see [http:/ /www.w3.org /|

[Protocols /1fc2616 /rfc2616-sec10.htmll

JAX-RS RESTful services considerations and limitations

Following is a list of considerations and limitations when using HATS support for
JAX-RS RESTful Web services:

* HATS runtime support for RESTful Web services requires the JAX-RS support
included in the Feature Pack for Web 2.0 for WebSphere Application Server
Version 7.0. WebSphere Application Server V8.0 and V8.5 include the required
JAX-RS support and no additional feature packs are necessary. For more details,
see "System Requirements for Host Access Transformation Services" at

[http:/ /www.ibm.com /support/docview.wss?uid=swg27011794

* HATS JAX-RS RESTful services are not compatible with Portal.

* To create customized providers, you must follow the JAX-RS specification, see

[http:/ /jcp.org /aboutJava/communityprocess/final /jsr311 /index.html} and refer

to the Apache Wink implementation, see |http://incubator.apache.org/wink/ |

Chapter 7. Developing Web services 79

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.ibm.com/support/docview.wss?uid=swg27011794
http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html
http://incubator.apache.org/wink/

80 IBM Host Access Transformation Services: Web Application Programmer's Guide

Chapter 8. Integration Objects - advanced topics

This chapter discusses customizing Integration Object Java code, Integration Object
templates, including choosing and modifying them, using Integration Objects in a
WebSphere Java EE application, and a connection management APL

Customizing Integration Object Java code

When you create an Integration Object from a macro or when HATS creates an
Integration Object automatically when you save a macro, HATS uses Integration
Object templates to create the Integration Object. These templates contain the Java
code that is included in each Integration Object.

HATS enables you to modify how an Integration Object interacts with the
underlying subsystems, at the Java code level, to perform additional functions.

There are two types of Java coding templates: default templates and customizable
templates. The templates are stored in

<shared_install_directory>\plugins\com.ibm.hats_nnn\predefined\
I0Templates\

where shared_install_directory is the shared resources directory where you installed
the HATS offering using IBM Installation Manager and nnn is the version and
build level of HATS.

The default templates are HPubTemplateHODBean.Default and
HPubTemplateHODBeanInfo.Default. The customizable templates are
HPubTemplateHODBean.Customize and HPubTemplateHODBeanInfo.Customize.
The default templates contain Java code that is independent of the HATS and Host
On-Demand code. Integration Objects that are created using the default templates
do not need to be recompiled and redeployed if the HATS or Host On-Demand
code changes for enhancements or service.

The default templates call methods from the superclass. The customizable
templates contain the methods, which you can customize. You can modify the
HPubTemplateHODBean.Customize template to add function to your Integration
Objects. For example, you might want to find out not just the text on the host
screen, but also its characteristics, such as color or highlighting.

The customizable templates contain substantial Java code that interacts with the
HATS code, Host On-Demand objects, events, and other Java constructs. These
templates enable you to modify an Integration Object to perform additional
functions. Integration Objects that are created using the customizable templates
contain code that directly interacts with the HATS and Host On-Demand code and
implements much of the data processing. If any HATS or Host On-Demand code
changes affect the code contained in the Integration Object, the Integration Object
might have to be recompiled and redeployed.

The templates that are used by HATS are different from those that are used by
Host Publisher. If you modified an Integration Object template in Host Publisher,
you must make the same changes to the templates that are provided by HATS and
recreate your Integration Objects in order to achieve the same functions in your
Integration Objects. When you import or migrate a Host Publisher Integration

© Copyright IBM Corp. 2003, 2018 81

Object that was created with a modified template, or an application using such an
Integration Object, you will see a message indicating that the Java bean was
created from a customized template.

Choosing Integration Object templates

If you do not need to modify how Integration Objects interact with HATS or the
operating environment, always use the default templates,
HPubTemplateHODBean.Default and HPubTemplateHODBeanInfo.Default. You do
not need to take any action to use these templates, unless you have previously
selected a different template.

If you want Integration Objects to perform additional functions, make a copy of
the HPubTemplateHODBean.Customize and
HPubTemplateHODBeanInfo.Customize templates and rename them. Modify the
new template files to add Java code for the functions you want the Integration
Objects to perform.

If you use either the customizable templates or renamed copies of the templates,
you must tell HATS which templates to use when creating Integration Objects. To
select Integration Object templates in HATS Toolkit, click Window > Preferences.
Expand HATS and click Integration Object. Browse to locate the Integration
Object templates you want to use.

Choosing Integration Object templates for a bidirectional
project
Two templates are provided as additional functions for HATS projects that use
bidirectional code pages. These templates are:
* HPubTemplateHODBeanBIDI.Default
* HPubTemplateHODBeanBIDI.Customize

If you create a HATS project that uses a bidirectional code page,
HPubTemplateHODBeanBIDI.Default is used by default when you create an
Integration Object. If you wish to add customization to your Integration Objects,
modify HPubTemplateHODBeanBIDI.Customize and select it on the HATS
Preferences page for use in creating Integration Objects.

These templates enable you to specify whether text output by the Integration
Object should be reordered. In addition, the data might be retrieved from an
application working in Logical mode and displayed by an application working in
Visual mode. Therefore, bidirectional reordering for insert and extract can be
controlled separately. The following properties are available:

* PromptReordering - determines whether data retrieved from a Prompt action
should be reordered.

* ExtractReordering - determines whether data retrieved for an Extract action
should be reordered.

* PromptRTLTextOrientation - determines whether data is sent to HATS Web
Services in logical right-to-left when promptReordering is true or, visual
right-to-left format if promptReordering is false.

* ExtractRTLTextOrientation - determines whether data from HATS Web Services
is received in logical right-to-left if promptReordering is true or, visual
right-to-left format if promptReordering is false.

82 IBM Host Access Transformation Services: Web Application Programmer's Guide

* PreventRoundTrip: If ExtractReordering is set to true, LRM markers are inserted
in the data to prevent a round-trip problem and achieve correct reordering.
However presence of these markers might impact data integrity, for example, if
the data is needed to be sent to a system which does not process these markers
properly. Setting the property to false turns this feature off.

The following methods are supplied to get and set these properties:

public String getPromptReordering();
public String getExtractReordering();
public String getPreventRoundTrip();
public void setPromptReordering(String value);
public void setExtractReordering(String value);
public void setPreventRoundTrip(String value);

e public void setPromptRTLTextOrientation(String v)

Sets whether data retrieved from a Prompt action should be displayed in
right-to-left direction (true) or not (false), where parameter v is either true or
false

Set parameter v to true if the data from a Prompt action has right-to-left
direction.

* public String getPromptRTLTextOrientation()

Returns whether data retrieved from a Prompt action should be displayed in
right-to-left direction (true) or not (false).

* public void setExtractRTLTextOrientation(String v)

Sets whether data retrieved from an Extract action should be displayed in
right-to-left direction (true) or not (false), where parameter v is either true or
false:

Set parameter v to true if the data from an Extract action has right-to-left
direction.

e public String getExtractRTLTextOrientation()
Returns whether data retrieved from an Extract action should be displayed in
right-to-left direction (true) or not (false)

* public void setPreventRoundTrip(String v)

Sets whether data retrieved from an Extract action can include LRMs (true)
or not (false) to achieve a correct reordering, where parameter v is either true
or false:

Set parameter v to allow a usage of these markers.
* public String getPreventRoundTrip()
Returns whether usage of LRMs is allowed (true) or not (false)

where value can be true or false. By default these properties are set to false, so
that the Integration Objects behave like those that are created with
non-bidirectional templates. However, when you use the HATS Toolkit to create
Model 1 or JSF Web pages, or for bottom-up Web services, that are based on
Integration Objects that were created with these templates, these values are set to
true according to options chosen in the studio GUL

Modifying Java coding templates

The HPubTemplateHODBean.Customize and
HPubTemplateHODBeanInfo.Customize templates contain Java code that is
incorporated into the Integration Object Java bean code (.java) file when the
Integration Object is compiled. The templates also contain constructs specifically
for HATS, which are prefaced with a percent sign (%). These constructs enable

Chapter 8. Integration Objects - advanced topics 83

HATS to create Java beans from the data that is specified by the user when the
Integration Object is created. When modifying the template files, be careful not to
delete the statements containing the HATS constructs. Make backup copies of the
HPubTemplateHODBean.Customize and HPubTemplateHODBeanInfo.Customize
templates before you begin making changes to the template files.

For example, suppose that you want to trace the name and the x and y screen
coordinates of the Host On-Demand Extract Events that are processed by an
Integration Object.

Note: Extraction of the x and y screen coordinates is not available in the Web
Services or EJB environments, because the x and y coordinates require access
to internal variables that are not available in those environments.

Follow these steps:
1. Back up the file HPubTemplateHODBean.Customize.

2. Change the code that extracts the macro event in
HPubTemplateHODBean.Customize to add the following lines after the
pullVariableValueFromExtractData(haovWorkOnThis, data);... statement:

// --- Trace X and Y screen coordinates example ---
if (HPubTracingOn) {
String strg = "Extracting variable: " + stringExtractNameForThisEvent +

" from screen location (" +

haovWorkOnThis.intXScreenLocation + "," +

haovWorkOnThis.intYScreenLocation + ")";
Ras.trace(this.getClass().getName(),"macroExtractEvent", strg);

}

For example:

public void macroExtractEvent(MacroExtractEvent oMacroExtractEvent)
{ // a HOD macroExtractEvent was fired for this macro

pullVariableValueFromExtractData(haovWorkOnThis, data);

// --- Trace X and Y screen coordinates example ---
if (HPubTracingOn) {
String strg = "Extracting variable: " + stringExtractNameForThisEvent +

" from screen location (" +

haovWorkOnThis.intXScreenLocation + "," +

haovWorkOnThis.intYScreenLocation + ")";
Ras.trace(this.getClass().getName(),"macroExtractEvent", strg);

bool
3. Update the HATS preferences to point to your new templates.

4. Create an Integration Object as you normally would. If you want to modify an
existing Integration Object to trace the name and the screen coordinates of the
Host On-Demand Extract Events, re-create the Integration Object by
right-clicking on the macro and selecting Create Integration Object. If you
introduced Java syntax errors in your template changes, they will show up as
compile error messages in the task list.

5. Rebuild your HATS project. In the HATS Projects view, select the name of your

project and select Project > Clean from the Rational SDP menu bar. You can
clean all workspace projects or just selected projects.

6. If you already have a way to invoke your Integration Object, skip this step. To
test your Integration Object, right click the name of the Integration Object and
select either Create Model 1 Web pages, Create Struts Web pages, or Create

84 IBM Host Access Transformation Services: Web Application Programmer's Guide

JSF Web Pages. This creates a page from which you can supply the required
inputs and invoke your Integration Object.

7. Test your modified Integration Object using the Run on Server function. In the
HATS Projects view, right click the name of your project and select Run on
Server.

Sample modified Integration Object template

A sample Integration Object template, created by adding code to
HPubTemplateHODBean.Customize, is contained in the HTML version of this
document. To view this sample, see the HATS Knowledge Center at

[http:/ /www.ibm.com /support/knowledgecenter /SSXKAY_9.6.0and search on
Sample modified Integration Object template.

This sample illustrates the use of a custom screen recognition criterion, which is
added to the macro within the description of the appropriate screen, to trigger the
DoReco() method, which is defined in the template. DoReco() saves all the fields of
the host screen in an XML string named extendedxml. A getter method,
getExtendedxml(), is provided so that the value can be extracted by a JSP after the
Integration Object has been executed. The changes made to the template are
marked with the comment // ADDED FOR XML TABLE.

The use of a custom screen recognition criterion, or descriptor, is of particular
interest because it enables you to capture the content of any screen that is
encountered by the Integration Object. Integration Objects are not notified when
the host screen changes or when a screen is recognized. By inserting a custom
screen recognition criterion, you can work with any screen.

To invoke the code that has been added to the template, you must modify the
macro from which you will build the Integration Object. Locate the screen whose
information you want to capture, and add this line as the last descriptor:

<customreco id="HPubExtractFieldAttributes|" optional="false" invertmatch="false" />

Be sure to add it after the other descriptors, so that it is used only on the desired
screens; otherwise you might collect data from the wrong screens. Note that the
customreco ID is "HPubExtractFieldAttributes", but the line added to the macro
has "HPubExtractFieldAttributes|". The bar character (|) is used as a separator
for parameters and must be included here even though there are no parameters.

If the macro uses the uselogic attribute to combine descriptors, you must update
the uselogic value to include the new descriptor, or it will be ignored. Here is an
example of the modifications you must make to the macro. If the original screen
description is:
<screen name="Screen2.2" entryscreen="true" exitscreen="true" transient="false">
<description uselogic="1 and 2" >
<oja status="NOTINHIBITED" optional="false" invertmatch="false" />
<string value="Ready; T" row="1" col="1" erow="-1" ecol="-1"
casesense="true" optional="false" invertmatch="false" />
</description>

Then the screen description with the new descriptor and the modified uselogic is:

<screen name="Screen2.2" entryscreen="true" exitscreen="true" transient="false">
<description uselogic="1 and (2 and 3)" >
<oja status="NOTINHIBITED" optional="false" invertmatch="false" />
<string value="Ready; T" row="1" col="1" erow="-1" ecol="-1"

Chapter 8. Integration Objects - advanced topics 85

http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0

casesense="true" optional="false" invertmatch="false" />
<customreco id="HPubExtractFieldAttributes|" optional="false"
invertmatch="false" />
</description>

When the DoReco() method is called, the template checks whether it is being called
to process the "HPubExtractField Attributes | " custom descriptor. If so, it captures
the information from the screen; if not, it passes control to the parent method to
perform screen recognition using one of the other descriptors. After the Integration
Object completes, the calling JSP can use the getter method to obtain the XML
string and then work with it.

Extracting data from non-text planes

Extracting data from non-text planes in macros for Integration Objects is not
supported by the Visual Macro Editor. However, you can extract data from
non-text planes by modifying the Integration Object template.

In the example, there is a section describing a Callback for HOD Custom screen
recognition. Using this method, other planes of data can be extracted in an IO.
For example, to get color data the following code could be used in the DoReco
method:

char[] buff = new char[2];

evt.GetPS().GetScreen(buff, 2, i, startCol, 1, ECLConstants.COLOR_PLANE);
int val = buff[0];

Using Integration Objects in a WebSphere Java EE application

This section describes how to use Integration Objects in two types of applications:
* A Web container, such as a custom servlet or JSP
* An EJB container

Using an Integration Object in a Web container (custom
servlet or JSP)

The instructions in this section refer to Integration Object methods. See
[“Integration Object methods” on page 54| for a description of these methods.

You can create your own Web project that runs Integration Objects. This section
lists the steps to move files from your HATS project to another Web project and
configure it to run your Integration Objects. This set of steps supports exporting
and using one or more individual Integration Objects. If you want to use a chain of
Integration Objects, you must copy all the files as described here and ensure that
the Integration Objects run in the correct order.

HATS maintenance is not applied to Integration Objects that are deployed in a
separate Web project. The best way to apply maintenance to Integration Objects
used in this way is to update the Integration Objects in a HATS project and then
re-export them after performing the following steps:

1. Create a Web project, if it does not already exist. This is the target project to
which you are exporting the Integration Objects. Copy the Integration Object
and BeanInfo source files into the Source directory of the Web project. Be sure
to keep the IntegrationObject package.

2. Copy the profiles directory located at Web Content/WEB-INF/profiles into the
WEB-INF directory of the new project. You can copy the entire directory, or you
can re-create the directory structure and copy just the connections and macros

86 IBM Host Access Transformation Services: Web Application Programmer's Guide

subdirectories of the profiles directory, with just the connection and macro that
are used by the Integration Object. Either way, you need to have these files:
WEB-INF\profiles\application.hap

WEB-INF\profiles\connections\ioconn.hco

WEB-INF\profiles\macros\iomacro.hma

Edit the application.hap file to remove unnecessary information. Right click the
file, select Open with.. and select the text editor. When you save your changes
in the text editor, you might see a message saying that you are saving a
resource in a non-workbench encoding. This is because the file is UTF-8
encoded, which is required. Click Yes to continue. If you prefer, you can make
a backup copy of application.hap before you copy it to the Web project, and
edit it using the HATS editor.

The only information application.hap must contain is the connections:

<?xml version="1.0" encoding="UTF-8"?7>
<application active="true" configured="true" description=
template="Simplel.jsp">
<connections default="ioconn">
<connection name="ioconn"/>
<connection name="ioZ2conn"/>
</connections>
</application>

Add all the jar files in the HATS EAR file into the class path of the Web project,
by copying them to the WEB-INF/lib directory of the Web project.

Note: You can also copy all the jar files in the HATS EAR file to your own
EAR file. However, before doing this, you must update the project's Java
Buildpath explicitly to point to the files and update the web project
MANIFEST.MF to point to include those files on the CLASSPATH.

Copy the runtime.properties file into the same directory where you added the

jar files. The location of the logs directory will be in the same directory as the
runtime.properties file.

Note: If you want to test your project in the local test environments, also copy
the runtime-debug.properties file.
Add three function calls to initiate the HATS runtime in your servlet or JSP.

// Initialize and activate the HATS runtime RAS functions,
// including tracing, logging, PII retrieval, locale.
com.ibm.hats.util.Ras.initializeRas(getServietConfig());

// Create the Ticense manager
com.ibm.hats.util.LicenseManager.getInstance();

// Initialize Host Publisher / connection management runtime
com.ibm.hats.runtime.connmgr.Runtime.initRuntime(getServietConfig());

After performing these steps, you can use the Integration Object as a regular Java
bean in your Web project.

To write a servlet that invokes an Integration Object:

1.
2.

Create an instance of your Integration Object by calling its constructor.

Invoke the setter methods for the Integration Object to set properties of input
variables. The naming convention for setter methods is as follows:

void setXyz(String)

where Xyz is the name of your input variable.

Chapter 8. Integration Objects - advanced topics 87

You can use a different connection pool from the one you specified when you
created your Integration Object. To specify a different connection pool, invoke
the method specifying the name of the connection pool you want to use:

void setHPubStartPoolName(String)

3. Invoke the Integration Object to perform its task (running a macro, for
example):
void doHPTransaction(HttpServletRequest, HttpServletResponse)

4. Check for errors. The doHPTransaction(HttpServletRequest,
HttpServletResponse) method throws an exception (of type
com.ibm.HostPublisher.IntegrationObject.BeanException) if the Integration
Object has an error.

When the Integration Object is called by a JSP, the JSP processor catches the
exception and redirects the browser to the error page that is specified on the
errorPage="errorPageName" attribute of the page directive. Refer to the HATS
default error page, DefaultErrorPage.jsp, for an example.

When the Integration Object is called by a custom servlet, your code must catch
the thrown exception:

try {
integrationObject.doHPTransaction(request, response);
} catch (Exception e) {
// Handle the exception condition and recover

}

5. Request the results from your Integration Object:

* Retrieve the values of output variables by invoking one of the following
methods:

— Simple text
String getAbc()

where Abc is the name of your output variable.
— Tables
- To get an entire column of results, invoke
String[] getAbc()

where Abc is the name of your output variable.
- To get a single value from a column of results, invoke
String getAbc(int) throws ArrayIndexOutOfBoundsException

where Abc is the name of your output variable, and int is the index of
the value you want. As you iterate through the array, the method
throws an ArraylndexOutOfBoundsException exception when you have
reached the end of the array.

* Regardless of the application that you used to create your Integration Object,
you can retrieve the output data in XML format by invoking the following
method:

String getHPubXMLProperties()

which returns the IntegrationObject's properties and values as an
XML-formatted string.

The input variables for all Integration Objects have getter methods
corresponding to each setter method so that you can retrieve those values if
necessary. The signature for these methods is

void getXyz(String)

88 IBM Host Access Transformation Services: Web Application Programmer's Guide

where Xyz is the name of your input variable.

To verify input or output variable names that are generated from data that you
entered, look at the properties that are defined in your Integration Object's
BeanlInfo java file. The Integration Object's Beanlnfo .java file is in the Source
folder of your project in the IntegrationObject package. In HATS Toolkit, the
BeanlInfo file is visible only in the Navigator view.

Using an Integration Object in an EJB container (from your
own EJB)

The instructions in this section refer to Integration Object methods. See
[“Integration Object methods” on page 54 for a description of these methods.

You can create your own EJB project that runs Integration Objects. This section lists
the steps to move files from your HATS project to another EJB project and
configure it to run your Integration Objects. This set of steps support exporting
and using one or more individual Integration Objects. If you want to use a chain of
Integration Objects, you must copy all the files as described here and ensure that
the Integration Objects run in the correct order.

Notes:

1. If using chained Integration Obejcts, use a stateful EJB project. Also, you must
manage the HATS session key (hPubLinkKey) in your EJB project. For more
information see [“Integration Object chaining” on page 59

2. If not using chained Integration Object, use a stateless EJB project.

3. When running in a WebSphere Application Server cluster, session affinity is
handled by the EJB container.

HATS maintenance is not applied to Integration Objects that are deployed in a
separate E]JB project. The best way to apply maintenance to Integration Objects
used in this way is to update the Integration Objects in a HATS project and then
re-export them after performing the following steps. In addition, if you export
HATS runtime jar files from a HATS EAR into your project, you must re-export
them if you apply HATS maintenance.

1. Create a custom EJB project (File > New > Project > EJB Project). In this
example, the project is referred to as My_E]B. Copy the application.hap file to
the ejpModule folder of the EJB project.

2. In the ejpbModule folder of the EJB project, create a folder named connections
(File > New > Other , expand Simple and select Folder). Copy to this folder
the .hco file that defines the connection that is used by the Integration Object.

3. In the ejpModule folder of the EJB project, create a folder named macros. Copy
to this folder the .hma file that defines the macro that is used by the Integration
Object, as well as any connect or disconnect macros that are required by your
connections.

4. In the ejpModule folder of the EJB project, create a folder named
IntegrationObject. Copy to this folder the Integration Object files (*;java and
*BeanInfo.java). At this point you should have these files:
ejbModule\application.hap
ejbModule\connections\ioconn.hco
ejbModule\macros*.hma
ejbModule\IntegrationObject*.java

5. Add all the jar files that are contained in the HATS EAR file into the class path
of the EJB project, by moving them either to your own EAR file, or into the
ejbModule directory of the E]JB project.

Chapter 8. Integration Objects - advanced topics 89

6. Copy the runtime.properties file into the same directory where you added the
jar files. The location of the logs directory will be in the same directory as the
runtime.properties file.

Note: If you want to test your project in the local test environments, also copy
the runtime-debug.properties file.
7. In the ejppModule\META-INF folder of the E]JB project, edit the MANIFEST.MF
file and add all the HATS runtime jar files to the dependency list.
8. Add these calls to your code to initiate the HATS runtime:

// obj is the EJB object reference,

// e.g., com.ibm.hats.util.Ras.initializeRas(this);
com.ibm.hats.util.Ras.initializeRas(obj);
com.ibm.hats.util.LicenseManager.getInstance();

// appName is a String representing the EJB project

// and obj is the EJB object reference

// e.g. com.ibm.hats.runtime.Runtime.initRuntime(My_EJB, this);
com.ibm.hats.runtime.connmgr.Runtime.initRuntime(appName, obj);

To use an Integration Object from a custom EJB:
1. Create an instance of your Integration Object by calling its constructor.

2. Invoke the setter methods to invoke methods to set properties of input
variables. The naming convention for setter methods is as follows:

void setXyz(String)

where Xyz is the name of your input variable.

3. Set the pool name to the name of the connection pool that the Integration
Object will use. Note that the connection name must be qualified with the
name of the EJB project. For example:

void setHPubStartPoolName("My EJB/main");

Where My_EJB is the name of the EJB project, and main is the name of the
Integration Object's connection pool.

4. Invoke the Integration Object to perform its task (running a macro, for
example), using the method:

void processRequest() throws BeanException

The processRequest() method throws an exception (of type
com.ibm.HostPublisher.IntegrationObject.BeanException) if the Integration
Object has an error.

You can reset the input variables and invoke the processRequest() method
multiple times. The error indications and result values are reset with each
invocation.

5. Check for errors by invoking:
int getHPubErrorOccurred()

If your result is nonzero, an error has occurred. You will have an error
exception. To get the specific exception for the error, invoke:

Exception getHPubErrorException()

You can retrieve the error message by invoking getMessage() on the Exception
object. The messages are documented in HATS Messages. Note that the first
seven characters are set to HATxxxx or HPSxxxx, where xxxx is the message
number.

6. Request the results from your Integration Object.

90 IBM Host Access Transformation Services: Web Application Programmer's Guide

* Retrieve the values of output variables by invoking one of the following
methods:

— Simple text
String getAbc()

where Abc is the name of your output variable.
— Tables
- To get an entire column of results, invoke:
String[] getAbc()

where Abc is the name of your output variable.
- To get a single value from a column of results, invoke:
String getAbc(int) throws ArrayIndexOutOfBoundsException

where Abc is the name of your output variable, and int is the index of
the value you want. As you iterate through the array, the method
throws an ArraylndexOutOfBoundsException exception when you have
reached the end of the array.

* Regardless of the application that you used to create your Integration Object,
you can retrieve the output data in XML format by invoking the following
method:

String getHPubXMLProperties()

which returns the IntegrationObject's properties and values as an XML
formatted string.

The input variables for all Integration Objects have getter methods
corresponding to each setter method so that you can retrieve those values if
necessary. The signature for these methods is

void getXyz(String)

where Xyz is the name of your input variable.

If you are unsure about any input or output variable names that are generated
from data that you entered, look at the properties that are defined in your
Integration Object's BeanInfo .java source file. The Integration Object's BeanInfo
java source file is in the Source folder of your project in the IntegrationObject
package. The BeanlInfo file is visible only in the Navigator view.

Connection management API

The HATS runtime has added a new API that you can use to acquire the
transformation connection (also referred to as the "default connection") in a servlet
context in anticipation of executing a middle-in-chain Integration Object against
that transformation connection. The purpose of this new APl is to provide better
integration between HATS applications and other, non-HATS Web applications.
The API consists of two new static methods,
acquireExistingTransformationConnection and
releaseExistingTransformationConnection, added to the RuntimeFunctions class in
the com.ibm.hats.runtime package.

The signatures of the method are as follows:

* public static final String
acquireExistingTransformationConnection(HttpServietRequest request)

Chapter 8. Integration Objects - advanced topics 91

92

throws
HostConnectionException, ApplicationUnavailableException

* public static final void
releaseExistingTransformationConnection(HttpServietRequest request)

acquireExistingTransformationConnection

The purpose of the acquireExistingTransformationConnection method is twofold:

* Allow a middle-in-chain Integration Object access to the transformation
connection from a servlet context

* Check out the application from the client container to block subsequent requests
from the browser while the initial request is still being processed.

This means that if a user attempts to access the transformation connection after it
has been acquired and before it has been released, the browser displays an
"application is busy" message page, which states that a possible cause is reloading
the Web page before the application is ready. The caller uses the returned label to
call the setHPubStartChainName() method of the Integration Object. The
Integration Object uses this label to locate the connection against which to run. If a
null label was returned, then the connection is not accessible to the Integration
Object. If a HostConnectionException is thrown, the application instance exists, but
there is no transformation connection. If an ApplicationUnavailableException is
thrown, no application instance exists or, if it does, it is currently checked out. To
prevent the Integration Object from destroying the transformation connection when
an error is encountered, call the setHPubSaveConnOnError(true) method prior to
invoking doHPTransaction() to run the Integration Object.

releaseExistingTransformationConnection

The purpose of the releaseExistingTransformationConnection method is to check in
the application so that it can be used through the entry servlet or by other
Integration Object chains. The caller should invoke the
releaseExistingTransformationConnection after all Integration Objects in the
Integration Object chain have been run. The

releaseExisting TransformationConnection call should be used to make the
transformation connection available again even if an Integration Object encounters
an error while running. This call signifies that the Integration Object chain no
longer needs access to the transformation connection.

IBM Host Access Transformation Services: Web Application Programmer's Guide

Chapter 9. Creating plug-ins for Web Express Logon

The Web Express Logon feature of HATS enables you to accept network security
credentials and use them to generate and use host credentials, freeing your users
from the requirement to navigate host logon screens. Web Express Logon
accomplishes this by the use of two types of plug-ins:

* The Network Security plug-in retrieves the user's credentials from a network
security application.

* The Credential Mapper plug-in uses the credentials that are returned by the
Network Security plug-in to retrieve the host user ID and acquire the host access
credentials.

HATS supplies several Network Security plug-ins and Credential Mapper plug-ins.
If the plug-ins that are supplied with HATS do not meet your needs, you can
create your own plug-ins and integrate them into Web Express Logon. For
example, if you need to access a different type of database where your credentials
are stored, you can write your own plug-in.

Creating custom plug-ins for Web Express Logon

Web Express Logon relies on plug-ins to provide the network user ID and host
access credentials. Web Express Logon interacts with these plug-ins through Java
interfaces, which are described in the following sections.

Web Express Logon is implemented at the enterprise archive (.ear) file level for
HATS Web projects and at the Web archive (.war) file level for HATS portlet
projects. Your plug-in needs to be placed into each enterprise archive file or Web
archive file accordingly. Follow these steps to create your own plug-in:

1. Create a Java project in Rational SDP to hold your plug-in. Ensure that these
HATS files are in the class path of the Java project, in this order:

a. hatscommon jar

b. hodweljar

These files are located in the common plug-ins (cache) directory of the HATS
Toolkit (common plug-ins directory/plugins/
com.ibm.hats.core_x.x.x.yearxxxxxxxx/lib) where x.x.x is the version level and
yearxxxxxxxx is the build level of HATS and in the root directory of the HATS
enterprise archive file.

2. Code your plug-in using the APIs described in this chapter.

3. Create a Java Archive (jar) file from your Java project. For HATS Web projects,
export the jar file to the file system in each .ear file in which you want to use
it. For HATS portlet projects, export the jar file to the Web
Content/WEB-INF/lib directory of the HATS portlet projects in which you
want to use it.

4. Add the Java Archive to the MANIFEST.MF located in Web-Content/META-
INF.

5. Configure your connections to use Web Express Logon, and configure Web
Express Logon to use your custom plug-in. Refer to [HATS User’s and)|
[Administrator’s Guide| for information about planning and configuring Web
Express Logon.

© Copyright IBM Corp. 2003, 2018 93

ugsslsec.htm
ugsslsec.htm

Web Express Logon plug-in interface

All plug-ins must implement the following Java interfaces:

com.ibm.eNetwork.security.sso.cms.CMInterface
The CMlInterface interface contains the following methods:

public int Init(Properties p, String id)
This method is used to initialize the plug-in. Any configuration parameters
that are needed to initialize the plug-in are passed in with the properties
object parameter. The parameters are configured in HATS Toolkit and
stored in the Web Express Logon configuration file, hatswelcfg.xml. The id
parameter is the symbolic name of the plug-in that is generated by HATS.
This value is used to qualify the instance of the plug-in in the event
multiple instances of the plug-in are running. The Network Security
plug-in always get initialized with the default value of "" (empty string),
because only one instance of this plug-in ever gets created. This method
should return one of the SSOConstants values listed in [Table 5 on page 96|

public void Destroy()
This method is called when HATS is shutting down.

public CMResponse CMSGetUserCredentials(CMRequest req)
HATS calls this method when it has selected the plug-in to respond to a
request. If the plug-in is a network security type, it is expected that the
plug-in will return the user's network user id. If the plug-in is a host user
credential type, then this method will need to return the user's host
credentials. The CMResponse and CMRequest objects used by this method
are described below.

The following methods are needed for plug-in identification and selection.

public String getName();
This method returns a string that identifies the plug-in.

public String getDescription();
This method returns a string that contains information that describes the
purpose and function of the plug-in.

public String getAuthor();
This method is needed to identify the originating company or person of
the plug-in.

public String[] getParameters();
This method returns a string array containing the names of parameters that
can be used to configure this plug-in. These tokens are the keys that are
specified in the parameters section of the Web Express Logon editor in
HATS Toolkit. The symbolic name of the plug-in generated by HATS (id) is
prepended to each parameter name when the parameters are passed into
the Init() method. If no parameters are needed for configuration, the
method might return null.

public Properties getParameterInfo(String strParm);
Given a parameter token, this method returns a properties object with the
list of properties for the given parameter. Possible properties are as follows:

* cmiDefaultValue. This property contains the default value for the
specified parameter. This property is optional; if it is not specified, there
is no default value for the parameter.

* cmiEncrypted. This property determines whether the parameter must be
encrypted. Valid values are the strings true and false. If this parameter

94 IBM Host Access Transformation Services: Web Application Programmer's Guide

is set to true, you must use the encryption and decryption methods that
are provided by Web Express Logon. See [“Encrypting and decrypting]|
fplug-in parameter strings” on page 98| for information about these
methods.

* cmiRequired. This property identifies whether or not a parameter is
required for initialization of the plug-in. Valid values are the strings true
and false.

com.ibm.eNetwork.security.sso.CMRequest
HATS requests credentials by passing request information in this object. The
following are its members and methods.

Members:

* ID (Host ID or Network ID)
* Host Application ID

* Host Destination Address

* Authentication Type

e HTTP Servlet request object

Methods:

public
public

CMRequest ()
CMRequest (String id, String applID, String hostAddr, int authType,

HttpServletRequest httpRequest)

public
public
public
public
public
public
public

public

public

String getID()

void setID(String id)

String getHostApp1ID()

void setHostApp1ID(String app1ID)

String getHostDestination()

void setHostDestination(String hostAddr)

int getAuthType()
Possible values for authtype are:

public static final int SSO_AUTHTYPE ALL = OxFFFF;

public static final int SSO_AUTHTYPE_3270HOST = 0x0001;
pubTic static final int SSO_AUTHTYPE_5250HOST = 0x0002;
pubTic static final int SSO_AUTHTYPE_VTHOST = 0x0004;

These values are defined in the
com.ibm.eNetwork.security.ss0.5SOConstants class. You must import this
class if you want to use the values.

void setAuthType(int authType)
Possible values for authtype are:

pubTic static final int SSO_AUTHTYPE_ALL = OxFFFF;

public static final int SSO_AUTHTYPE_3270HOST = 0x0001;
pubTic static final int SSO_AUTHTYPE_5250H0ST = 0x0002;
public static final int SSO_AUTHTYPE_VTHOST = 0x0004;

These values are defined in the
com.ibm.eNetwork.security.ss0.5SOConstants class. You must import this
class if you want to use the values.

HttpServletRequest getHttpRequestObject()

Chapter 9. Creating plug-ins for Web Express Logon 95

public void setHttpRequestObject(HttpServietRequest httpRequest)

com.ibm.eNetwork.security.sso.CMResponse
Your plug-in bundles its response into this object and returns it to HATS. The

following are its members and methods.

Members:
* Status Code
* ID (Host ID or Network ID)

* User Credentials (Password or Passticket)

Methods:
public CMResponse()
public
public int getStatus()

public void setStatus(int status)

CMResponse (Object id, Object password, int status)

The Credential Mapper plug-in uses the status element to provide the
status of the return value. If the plug-in query fails for any reason, this
field reports that failure to Web Express Logon. Failure codes are defined
in the com.ibm.eNetwork.security.ss0.5SOConstants class. contains
the status code numeric values, constant strings, and definitions.

Table 5. Status code definitions

Status Constant value Description
code
0 SSO_CMR_SUCCESS Success

1 SSO_CMR_UNKNOWN_STATUS_CODE

Unknown status code

2 $SO_CMR_CREDENTIAL_MAPPER
_NOT_FOUND

Credential Mapper not found

3 SSO_CMR_INVALID_WEB_ID Web ID not valid

4 SSO_CMR_INVALID_APPL_ID Application ID not valid

5 SSO_CMR_INVALID_SERVER_ADDR |Server address not valid

6 SSO_CMR_DATABASE_CONNECTION_ |Database connection error
ERROR

7 SSO_CMR_USER_ID_NOT_FOUND_ User ID not found in database
IN_DB

8 SSO_CMR_EXCEPTION

Exception

9 $SO_CMR_INVALID_USER IDU

Invalid user ID not valid

10 |SSO_CMR_PASSTICKET ERROR

Passticket error

11 SSO_CMR_TIMEOUT

Timeout

12 SSO_CMR_UNEXPECTED_DCAS_RC

Unexpected DCAS return code

13 [SSO_CMR_API_NOT_SUPPORTED

API not supported

14 [SSO_CMR_BAD_URL

Bad URL

15 [SSO_CMR_UNABLE_TO_PARSE_
RESPONSE

Unable to parse response

16 [SSO_CMR_LOCAL_USERID_NOT_
AVAILABLE

Local user ID not available

IBM Host Access Transformation Services: Web Application Programmer's Guide

Table 5. Status code definitions (continued)

Status Constant value Description
code
17 SSO_CMR_DUPLICATE_XML_TAGS Duplicate XML tags
18 SSO_CMR_CLIENT_EXCEPTION An exception occurred while processing the

credential request

19 SSO_CMR_NO_NETWORK_SECURITY_ |Network Security plug-in is not defined to
PLUGIN Web Express Logon

public Object getID()
public String getIDasString()

public void setID(Object id)
Your CMSGetUserCredentials() method can use this method to return the
network user ID from a Network Security plug-in or the host user ID from
a Credential Mapper plug-in.

public Object getPassword()
public String getPasswordasString()

public void setPassword(Object password)

Writing a Network Security plug-in

HATS provides a Network Security plug-in for Tivoli® Access Manager and one for
use with WebSphere Portal. If you decide not to use these plug-ins, you can create
your own.

The function of the Network Security plug-in is to acquire the user's network ID,
which can be gleaned from the HTTP header that is found on the incoming HTTP
request object. The details of how to acquire the network ID are specific to your
network security application. Refer to your network security application's
documentation for more information.

Writing a Credential Mapper plug-in

HATS provides several Credential Mapper plug-ins. If you decide not to use any of
these, you can create your own plug-in.

The function of the Credential Mapper plug-in is to take the user's network ID
(and perhaps the application ID) and obtain the appropriate host credentials. In
Web Express Logon's implementation, users' network IDs are mapped to their host
IDs during this process by way of a Java Database Connectivity (JDBC) accessible
database. However, you might want to do this by another means, such as LDAP.
For this reason, you might want to write your own Credential Mapper plug-in.

In the DCAS/JDBC plug-in, HATS automates z/OS® logins by associating a user's
network IDs with their host IDs, and taking the host ID with the application ID
and obtaining a RACF-generated passticket from the Digital Certificate Access
Server (DCAS), a component of z/OS. This passticket is then used to sign the user
on to the host. In your environment, you might not want to use the JDBC
association aspect of the provided plug-in. For this reason, HATS provides a DCAS
APL This API provides access to RACF-generated passtickets.

Chapter 9. Creating plug-ins for Web Express Logon 97

98

Sample Web Express Logon plug-in

A sample Web Express Logon plug-in, which illustrates an approach to coding
either a Network Security plug-in or a Credential Mapper plug-in, is contained in
the HTML version of this document. To view this sample, see the HATS

Knowledge Center at fhttp:/ /www.ibm.com /support/knowledgecenter /|
SXKAY_9.6.0[and search on Sample Web Express Logon plug-in.

Encrypting and decrypting plug-in parameter strings

Web Express Logon includes an object called
com. ibm.eNetwork.security.sso.PasswordCipher to encrypt and decrypt plug-in
parameter strings. It contains the following two methods:

public static String encrypt (String plainText)
This method returns an encrypted string that is passed as a parameter.

public static String decrypt (String cipherText)
This method reverses the encryption process by returning a decrypted
string. If the cipherText was not encrypted using the encrypt method, it
returns the original input string

The DCAS API object

The Digital Certificate Access Server (DCAS) API object (DCASClient) encapsulates
the passticket requests. The following are its members and methods.

Members:

* Port Number

* Keystore File Name

* Keystore Password

* Use WellKnownTrustedCAs
* Server Authentication

* Trace Level

If you have previously written your own plug-in using the DCASClient object
prior to HATS V7.0, you do not need to change your code for it to continue to
work. However, new APIs are available starting with HATS V7.0 and should be
used when developing new plug-ins. The preferred APIs are flagged below with a

symbol.

Methods:

Public DCASClient()
This constructor should be used if you want to use the default trace level
and log file name when the object is created.

Public DCASClient(int tracelevel, String logFile)
This constructor should be used if you want to specify a trace level and log
file name when the object is created.
* traceLevel - Trace level (0=None, 1=Minimum, 2=Normal, 3=Maximum)
* logkFile - Trace log file name. This parameter is not used in HATS. Traces
are recorded in the HATS trace files. Web Express Logon traces are
controlled with the runtime trace flag, trace.RUNTIME.

public int Init (String hostAddress, int hostPort, String trustStoreName,
String trustStorePassword, String trustStoreType)

IBM Host Access Transformation Services: Web Application Programmer's Guide

http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0
http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0

* hostAddress - The DCAS server IP address.

* hostPort - The DCAS server port number. If not specified, the default
port number 8990 will be used.

* trustStoreName - The name of the truststore to be used by JSSE to
connect to DCAS. It should include the full path name. The name is set
to null if you are using the default truststore or
WellKnownTrustedCAs.p12.

* trustStorePassword - The password of the specified truststore. The
password is set to null if you are using the default truststore or
WellKnownTrustedCAs.p12.

* trustStoreType - The type of the specified truststore. Valid values are:
- DCASClient. TRUSTSTORE_TYPE_PKCS12 (pkes12)
— DCASClient. TRUSTSTORE_TYPE_JCEKS (jceks)
— DCASClient. TRUSTSTORE_TYPE_JKS (jks)

The truststore type is set to null if you are using the default truststore or
WellKnownTrustedCAs.p12.

This method should be called after creating the DCASClient object. The
parameters are stored in the object, and they do not change for the life
of the object. The truststore name should include the full path name. The
truststore must contain the DCAS client certificate and DCAS server
certificate, unless the default truststore or WellKnownTrustedCAs.p12
will be used. The truststore password should be encrypted using the
encrypt password tool. It will be decrypted before being stored in the
object. The valid return codes are described in the SSOConstants object.
Return 0 on success, nonzero otherwise. See SSOConstants for return
codes.

Public int Init(String dcasAddr, int dcasPort, String keystoreFileName,

String keystorePassword)
This method should be called after creating the DCASClient object. The
parameters are stored in the object, and they do not change for the life of
the object. The keystoreFileName should include the full path name. The
keystore database must contain a DCAS client certificate and the DCAS
server certificate. If WellKknownTrustedCAs.p12 or the default truststore is
being used for these certificates, set keystoreFileName and keystorePassword
to null. The keystore password should be encrypted using the encrypt
password tool. It will be decrypted before being stored in the object. The
valid return codes are described in the SSOConstants object.

If a keystore of a type other than p12 is being used, use the
Init(hostAddress, hostPort, trustStoreName, trustStorePassword,
trustStoreType method instead.

e dcasAddr - The DCAS server's IP address

* dcasPort - The DCAS's port number. If not specified, the default port
number of 8990 will be used.

* keystoreFileName - The name of the SSL keystore database file. The name
should include the full path name. While you are developing your
plug-in, you will not know the full path that will be used when you
deploy your HATS application. Following is an example of code that
you can use to convert a provided file name parameter into a fully
qualified file name, relative to the EAR directory, at runtime:

import com.ibm.eNetwork.security.sso.cms.CredMapper;
import com.ibm.eNetwork.security.sso.cms.PluginResourcelLocator;

Chapter 9. Creating plug-ins for Web Express Logon 99

100

public
public
Public
Public

Public
String

Public

if ((pl2FileName != null) &&
(CredMapper.getPluginResourceLocator() != null))

pl2FileName =
CredMapper.getPluginResourcelLocator().findResource(pl2FileName) ;

* keystorePassword - The password of the above keystore database.

The keystore Password should be encrypted with the
PasswordCipher.encrypt() method. If it is provided by an encrypted
parameter (that is, a parameter with cmiEncrypted="true", it is provided to
the plug-in in encrypted form. If it is not provided by an encrypted
parameter, you can use this code to encrypt it:

import com.ibm.eNetwork.HOD.common.PasswordCipher;
keystorePW = PasswordCipher.encrypt(keystorePW);

The valid return codes are listed in [Table 5 on page 96|

void setUseDefaultTrustStore(boolean def)

void setNoFIPS(boolean nof)

void setWellKnownTrustedCAs(boolean wellKnownCAs)
void setServerAuthentication(boolean serverAuth)

CMResponse getPassticket(String hostUserID, String hostApplID,
hostAddr, long timeout)

This method should be called after creating and initializing the
DCASClient object to obtain a passticket from the DCAS server. The
passticket and the user ID are returned in a CMResponse object. The caller
should check the status field of the CMResponse object to see whether the
call was successful or not. If the call was successful, the status field will be
set to SSO_CMR_SUCCESS. The valid values for the status field are listed
in [Table 5 on page 96| An SSL client-authenticated connection is established
with the DCAS, and it is reused for all subsequent passticket requests.

* hostUserID - User ID for which the passticket is being requested.

* hostApplID - Application ID for which the passticket is being requested.

* hostAddr - The DCAS's address.

e timeout - The time available for the DCAS protocol to return a passticket,
specified in milliseconds.

void Destroy()
This method closes the DCAS connection.

IBM Host Access Transformation Services: Web Application Programmer's Guide

Chapter 10. Using the HATS bidirectional API

If you create HATS applications that use bidirectional (Arabic or Hebrew) code
pages, and you add business logic or create your own custom components or
widgets, you can use the bidirectional API to handle the recognition of host
components and the presentation of widgets on the Web page. This chapter
describes this API. Before using the material in this chapter you should be familiar
with the bidirectional concepts described in |[HATS User's and Administrator’s Guidel

Data Conversion APIs

Two APIs for handling text conversion from visual to logical and vice versa are
included in the HostScreen class. You can use these APIs when creating custom
widgets and components to handle the extraction of data.

ConvertVisualToLogical

public java.lang.String ConvertVisualTological(java.lang.String
inputBuffer, boolean isleft-to-rightVisual,
boolean isleft-to-rightImplicit)

Converts the given string from visual to implicit format and returns the implicit
format of the string.

inputBuffer
The input string in visual format.

isleft-to-rightVisual
If true, inputBuffer is in visual left-to-right form.

isleft-to-rightImplicit
If true, the output buffer is in implicit left-to-right form.

ConvertLogicalToVisual

public java.lang.String ConvertlLogicalToVisual(java.lang.String
inputBuffer, boolean isleft-to-rightImplicit,
boolean isleft-to-rightVisual)

Converts the given string from implicit to visual format and returns the visual
format of the string.

inputBuffer

The input string in implicit format.
isleft-to-rightImplicit

If true, inputBuffer is in implicit left-to-right form.

isleft-to-rightVisual
If true, the output buffer is in visual left-to-right form.

Global Variable APIs

There are two getter methods that you can use to get the value of global variables.
Using these methods you can get the global variable value either in implicit format
or in visual format. These two methods are in class
com.ibm.hats.common.Baselnfo.

© Copyright IBM Corp. 2003, 2018 101

ugbidi.htm

getGlobalVariable

public IGlobalVariable getGlobalVariable(String name, boolean
createIfNotExist,boolean bidiImplicit)

Gets the named global variable, optionally creating it if it does not already exist.

createIfNotExist
Indicates whether or not to create a nonexistent global variable.

bidilmplicit
Indicates whether to get the global variable value in implicit format if true,
or in visual format if false.

getSharedGlobalVariable

public IGlobalVariable getSharedGlobalVariable(String name, boolean
createIfNotExist,boolean bidiImplicit)

Gets the named shared global variable, optionally creating it if it does not already
exist.

createIfNotExist
Indicates whether or not to create a nonexistent global variable
bidilmplicit
Indicates whether to get the global variable value in implicit format if true,
or in visual format if false.

BIDI OrderBean

You can use the methods of the BIDI OrderBean for the correct display of
bidirectional data. It contains the following parameters:

BidiString
String. Contains bidirectional text

FromTextVisual
Boolean. Indicates whether the source bidirectional text is visual. Default is
true.

FromOriL TR
Boolean. Indicates whether the orientation of the source bidirectional text is
LTR. Default is true.

ToTextVisual
Boolean. Indicates whether the target bidirectional text is visual. Default is
true.

ToOriLTR
Boolean. Indicates whether the orientation of the target bidirectional text is
LTR. Default is true.

NeedShape
Boolean. Indicates whether bidirectional text is Arabic text and whether it
needs shaping. Default is false.

CharSet
String. Defines the character encoding for the JSP.

NumShape
String. Defines the numerals shaping method. Default is Nominal.

102 IBM Host Access Transformation Services: Web Application Programmer's Guide

SymSwap
Boolean. Indicates whether symmetric swapping is on. Default is false.

BIDI OrderBean methods

setBidiString
public void setBidiString (String BdString)

Sets the bidirectional text to be reordered to the given string. The only
parameter is BdString, which is the bidirectional string that needs
reordering.

getBidiString
public String getBidiString ()

Gets the bidirectional text. Returns the bidirectional string that needs
reordering.

setFromTextVisual
public void setFromTextVisual (boolean on)

Sets the source bidirectional text type as visual. The only parameter is on.
If true, defines this source bidirectional text as visual. If false, defines this
source bidirectional text as implicit.

setFromOriLTR
public void setfromOriLTR (boolean on)

Sets the source bidirectional text orientation as LTR. The only parameter is
on. If true, defines this source bidirectional text as LTR. If false, defines
this source bidirectional text as RTL.

setToTextVisual
public void setToTextVisual (boolean on)

Sets the target bidirectional text type as visual. The only parameter is on. If
true, defines this target bidirectional text as visual. If false, defines this
target bidirectional text as implicit.

setToOriLTR
public void setToOriLTR (boolean on)

Sets the target bidirectional text orientation as LTR. The only parameter is
on. If true, defines this target bidirectional text as LTR. If false, defines
this target bidirectional text as RTL.

setEncoding
public void setEncoding (String CharSet)

Sets the encoding character set. The only parameter is CharSet, which is a
character-encoding name.

setNeedShape
public void setNeedShape (boolean on)

Sets the need to perform shaping. The only parameter is on. If true,
indicates the need to perform shaping on the bidirectional text.

Order public void Order ()
Performs the ordering of the bidirectional text. There are no parameters.

CompressLamAlef
public String CompressLamAlef(String input,boolean direction)

Chapter 10. Using the HATS bidirectional API 103

Returns a string in which a Lam character followed by an Alef character is
replaced by one LamAlef character. Parameters are:

* Direction. If true, indicates input text is in visual form. If false, input
text is in implicit form.

* Input. An input string containing LamAlef characters to be compressed.

ExpandLamAlef
public String ExpandLamAlef(String input,boolean direction)

Returns a string in which a Lam Alef character is replaced by a Lam
followed by one Alef character. Parameters are:

* Direction. If true, indicates input text is in visual form. If false, input
text is in implicit form.

* Input. An input string containing LamAlef characters to be expanded.
setNumerals
public void setNumerals(String NumShape)
Sets the numerals shape of the output buffer. The only parameter is:
* NumShape. A string that takes one of three values:
- NOMINAL. Numerals are in Latin format.
— CONTEXTUAL. Numerals follow numbers.
- NATIONAL. Numerals are in National format.
* Input. An input string containing LamAlef characters to be expanded.

setSymSwap
public void setSymSwap (boolean on)

Sets the Symmetric swapping option with Visual RTL orientation. The only
parameter is on. If true, symmetric swapping is enabled for swapping
characters in RTL screens. If false (the default), symmetric swapping is
disabled for swapping characters in RTL screens.

ShapeArabicData
public String ShapeArabicData(String strInBuffer,boolean
isLTRVisual, boolean EnableNumSwap)
Returns a string in which Arabic data is shaped. Parameters are:
¢ strInBuffer. The bidirectional string that needs shaping.

¢ isLTRVisual. An input string containing LamAlef characters to be
expanded. If true, bidirectional string is left to right visual. If false,
bidirectional string is right to left visual.

* EnableNumSwap. If true, enable Numeric swapping. If false, disable
numeric swapping.

DeshapeArabicData
public String DeshapeArabicData (String strInBuffer,boolean
isLTRVisual,boolean EnableNumSwap)
Returns a string in which Arabic data is deshaped. Parameters are:
* strInBuffer. The bidirectional string that needs deshaping.

 isLTRVisual. If true, bidirectional string is left to right visual. If false,
bidirectional string is right to left visual.

* EnableNumSwap. If true, enable numeric swapping. If false, disable
numeric swapping.

104 1BM Host Access Transformation Services: Web Application Programmer's Guide

ConvertLogicalToVisual
public java.lang.String ConvertLogicalToVisual(java.lang.String
inputBuffer, boolean isLTRimplicit,
boolean isLTRVisual)

Converts the given string from implicit to visual format and returns the
visual format of the string. Parameters are:
* InputBuffer. The input string in implicit format.
 isLTRimplicit. If true, inputBuffer is in implicit left-to-right form.
* isLTRVisual. If true, the output buffer is in visual left-to-right form.
ConvertVisualToLogical
public java.lang.String ConvertVisualTolLogical(java.lang.String

inputBuffer, boolean isLTRVisual,
boolean isLTRimplicit)

Converts the given string from visual to implicit format and returns the
implicit format of the string. Parameters are:

* InputBuffer. The input string in visual format.

* isLTRimplicit. If true, the output buffer is in implicit left-to-right form.
* isLTRVisual. If true, inputBuffer is in visual left-to-right form.

Chapter 10. Using the HATS bidirectional API 105

106 IBM Host Access Transformation Services: Web Application Programmer's Guide

Appendix A. HATS Toolkit files

When you use HATS Toolkit to build your project, files for each component of the
project are created. This appendix tells you where the file is located on your
system, how to view and edit the source for the file, and describes the tags that
make up each file.

Note: Use the HATS Toolkit editors if you edit these source files.

All of the files you create with HATS Toolkit are stored on your system in one or
more workspaces managed by your Rational SDP program, such as Rational
Application Developer. You can choose your workspace directory, and you can
have more than one. Refer to the information provided with Rational SDP for
information about choosing your workspace.

All of the file locations in this appendix refer to the relative path from the
directory named for your project, which will be created within your workspace.

Application file (.hap)

The application file contains XML tags that define the settings you select when you
create the project.

The application (.hap) file is stored in the project_name/Web Content/ WEB-INF/
profiles directory, where project_name is the name you gave the project when you
created it. The application (.hap) file for a HATS EJB project is stored in the
project_name/ejpModule directory. To view and edit the source of the application
file for your HATS project, expand your project in the HATS Projects view and
double-click Project Settings to open the project editor. You can view the source by
clicking on the Source tab.

You can modify the application file using any of the tabs in the project editor.
HATS Toolkit updates the affected information on other tabs when you make
changes on any tab.

<application> tag

The <application> tag is the enclosing tag for the project.

The attributes of the <application> tag are:

active This attribute is not used by HATS. It is contained here for compatibility
with HATS Limited Edition.

configured
This attribute is not used by HATS. It is contained here for compatibility
with HATS Limited Edition.

description
Specifies the description you enter when you create a project.

template
Specifies the name of the template you selected for the project when you
created the project. The default template is Finance.jsp.

© Copyright IBM Corp. 2003, 2018 107

<connections> tag

The <connections> tag is a container for all the connection tags that define
connections for this project.

The attributes of the <connections> tag are:

default
Specifies the name of the default connection. The default connection, which
is created using the connection values that you specify in the New HATS
Project wizard, defaults to the name of main.

<connection> tag

The <connection> tag identifies a connection defined for the project and points to
the connection (.hco) file that defines the connection.

The attributes of the <connection> tag are:

name Specifies the name you entered when you created the connection.

<eventPriority> tag

The <eventPriority> tag is the enclosing tag for the screen events you defined for
the project. The order of the event tags within the <eventPriority> tag is the order
in which screen events are checked when a new host screen is encountered. This
tag has no attributes.

<event> tag

The <event> tag specifies a screen event that you defined for the project.

The attributes of the <event> tag are:

enabled
Specifies whether the screen event's screen recognition criteria should be
checked when a new host screen is encountered. Valid values are true and
false. The default value is true.

name Specifies the name you gave the screen event when you defined it. If you
store a screen event file under a folder (or group), the name of the folder is
prepended to the name of the file.

type Specifies that this is a screen combination event. The available attribute is
screenCombination.

<classSettings> tag

The <classSettings> tag is the enclosing tag for the Java classes you include in the
project. This tag has no attributes.

<class> tag

The <class> tag specifies a class whose attributes are defined in the enclosed
<setting> tags.
The attributes of the <class> tag are:

name Specifies one of the following Java classes:
* com.ibm.hats.common.AppletSettings

¢ com.ibm.hats.common.ApplicationKeypadTag

108 IBM Host Access Transformation Services: Web Application Programmer's Guide

* com.ibm.hats.common.ClientLocale

* com.ibm.hats.common.DBCSSettings

* com.ibm.hats.common.DefaultConnectionOverrides
* com.ibm.hats.common.DefaultGVOverrides
* com.ibm.hats.common.HostKeypadTag

* com.ibm.hats.common.KeyboardSupport

* com.ibm.hats.common.OIA

* com.ibm.hats.common.RuntimeSettings

* com.ibm.hats.transform

* com.ibm.hats.transform.components.narme
* com.ibm.hats.transform.DefaultRendering
* com.ibm.hats.transform.widgets.dojo.name
* com.ibm.hats.transform.widgets.name

<setting> tag

The <setting> tag specifies the settings associated with the class in which the
<setting> tag is enclosed. The <setting> tag contains name and value pairs for
each of the classes. The following sections described the name and value pairs for
each of the classes.

com.ibm.hats.common.AppletSettings

For the com.ibm.hats.common.AppletSettings class, name specifies a customizable
setting for the HATS application automatic disconnect and refresh implementation
methods, Client pull (AJAX) and Server push (applet). The following settings can
be used to configure the Client pull (AJAX) method, including the auto-disconnect
and auto-refresh functions. These settings are supported for HATS Web
applications, including JSR 286 portlets.

browserDisconnectDelay
Effective when the enable setting is ajax and the
browserDisconnectEnabled setting is true. The time in milliseconds to
wait before performing the auto-disconnect function. The minimum value
is 2000 milliseconds (2 seconds). The default is 15000 milliseconds (15
seconds).

browserDisconnectEnabled
If the enable setting is ajax, and if this setting is true, enables the
auto-disconnect function. If enabled, the HATS application initiates a
disconnect action if the client has not polled the HATS application within
the time specified by the browserDisconnectDelay setting.

browserPollInterval
Effective when the enable setting is ajax. The interval in milliseconds at
which the browser will poll the HATS application to restart the
browserDisconnectDelay timer, if enabled, and check for host screen
updates. The minimum value is 1000 milliseconds (1 second). If
browserDisconnectEnabled is true, then the poll interval value must be
less than the value in the browserDisconnectDelay setting by at least 1000
milliseconds (1 second). The default is 5000 milliseconds (5 seconds).

Note: If an HTTP session idle timeout is configured, browser polling of the

HATS application effectively disables the HTTP session idle timeout
functionality. Because of this, the HATS runtime takes responsibility

Appendix A. HATS Toolkit files 109

for monitoring the HTTP session idle timeout period and initiates a
disconnect of the HATS session when no user activity is seen before
the idle time is exceeded.

browserRefreshEnabled
If the enable setting is ajax, and if this setting is true, enables the
auto-refresh function. If enabled, the browser initiates a refresh of the
screen if there has been no user input and the poll response indicates that
the host screen has changed.

enable
Use this setting to configure which automatic disconnect and refresh
method to use. Specify ajax to configure the Client pull (AJAX) methods,
auto-disconnect and auto-refresh. Specify true to configure the Server push
(applet) method, also known as the asynchronous applet update method.
Specify false to disable both of the methods. The default is false.

Refer to the section, [Using the Server push (applet) method}, in the HATS User’s and
Administrator’s Guide for a description of the settings for the Server push (applet)
method.

Note: The Server push (applet) method of detecting disconnect and host refresh is
deprecated. You are encouraged to use the Client pull (AJAX) method
instead. While the applet method is currently supported, IBM reserves the
right to remove this capability in a future release of the product.

com.ibm.hats.common.ApplicationKeypadTag
For the com.ibm.hats.common.ApplicationKeypadTag class, name specifies a
customizable setting:

show If true, shows a keypad in the application.

showDefault
If true, shows a key in the application keypad to change the presentation
to the default transformation.

showDisconnect
If true, shows a key in the application keypad to disconnect from the host.

showKeyboardToggle
If true, shows a key in the application keypad for toggling display of a
host keyboard.

showPrintJobs
If true, shows a key in the application keypad for showing print jobs.

showRefresh
If true, shows a key in the application keypad to refresh the browser
window contents using the original transformation, and restore the input
fields to their original value.

showReset
If true, shows a key in the application keypad to clear all the fields on the
browser page of any entries made by the end user.

showReverse
If true, shows a key in the application keypad for bidirectional support.

style Depending on the value attribute, shows the keys defined with
value=buttons or 1inks in the application keypad.

110 IBM Host Access Transformation Services: Web Application Programmer's Guide

ugprject.htm#autodisc_applet

com.ibm.hats.common.ClientLocale

For the com.ibm.hats.common.ClientLocale class, name is always Tocale. The value
for the locale setting specifies the language to be used to display button captions
and messages. Value can be one of the following. The default is accept-language.

Characters that identify the country code of the locale

ar Arabic

cs Czech

de German
en English

es Spanish

fr French

hu Hungarian
it Italian

ja Japanese
ko Korean

pl Polish
pt_BR Brazilian Portuguese
ru Russian

tr Turkish

zh Simplified Chinese

zh TW
Traditional Chinese

accept-language
The language is acquired from the Accept-Language HTTP header of the
user's browser.

primaryLocale
The language is acquired from the primary locale of the WebSphere
Application Server where the HATS application runs.

com.ibm.hats.common.DBCSSettings

For the com.ibm.hats.common.DBCSSettings class, there are three settings,
autoConvertSBCStoDBCS, eliminateMaxlengthInldeographic, and
showUnprotectedSISOSpace.

e Valid values for the autoConvertSDBCtoDBCS attribute are:

true Automatically convert single byte characters to double byte characters
for 3270 and 3270E G-type or 5250 G-type and J-type fields.

false Do not automatically convert single byte characters to double byte
characters for 3270 and 3270E G-type or 5250 G-type and J-type fields.

The default is false. For more information, see the section [Project settings editor|
in the HATS User’s and Administrator’s Guide.

* Valid values for the eliminateMaxlengthInldeographic attribute are:

true If the enableAutoAdvance Runtime setting is true, then characters that
exceed the maximum length of the DBCS field can be entered into the

Appendix A. HATS Toolkit files 111

ugdbcs.htm#dbcs_prj

IME. Also, when the user selects the IME candidate for the field, the
excess characters are cut and pasted into the next field.

If the enableAutoAdvance Runtime setting is false, then characters that
exceed the length of the DBCS field can be entered into the IME.
However, when the user selects the IME candidate for the field, the
excess characters are removed and not entered into any other field.

false Characters that exceed the maximum length of the DBCS field cannot be
entered into the IME.

The default is false. For more information, see the section [Project settings editor]
in the HATS User’s and Administrator’s Guide.

* Valid values for the showUnprotectedSISOSpace attribute are:

true Show any unprotected Shift In or Shift Out characters as a space.

false Do not use a space to show unprotected Shift In or Shift Out characters.

The default is true. For more information, see the section [Project settings editor]
in the HATS User’s and Administrator’s Guide.

com.ibm.hats.common.DefaultConnectionOverrides

For the com.ibm.hats.common.DefaultConnectionOverrides class, there is always at
least one <setting> tag with a name attribute of alTowAl1. This <setting> tag
indicates the chosen default security policy regarding the overriding of connection
parameters. Any exceptions to the chosen security policy for connection overrides
are recorded with additional <setting> tags, with the name attribute set to the
name of the exceptional connection parameter.

Valid values for the name attributes are:

true The end user can override the named connection parameter. If the named
connection parameter is allowAl1, this means that all unnamed connection
parameters may be overridden with clients requests.

false The end user can not override the named connection parameter. If the
named connection parameter is al1owAl1, this means that no unnamed
connection parameters may be overridden

The default for the allowAl1 setting is false.

com.ibm.hats.common.DefaultGVOverrides

For the com.ibm.hats.common.DefaultGVOverrides class, there is always at least
one <setting> tag with a name attribute of allowAl11. This <setting> tag indicates
the chosen default security policy regarding the overriding of global variables. Any
exceptions to the chosen security policy are recorded with additional <setting>
tags, with the name attribute set to hatsgv_variableName for regular global variable
exceptions, or hatssharedgv_variableName for shared global variable exceptions.

Valid values for the name attributes are:

true The end user can override the named connection parameter. If the named
connection parameter is al1owAl1, this means that all unnamed connection
parameters may be overridden with clients requests.

false The end user can not override the named connection parameter. If the
named connection parameter is al1owAl1, this means that no unnamed
connection parameters may be overridden

112 IBM Host Access Transformation Services: Web Application Programmer's Guide

ugdbcs.htm#dbcs_prj
ugdbcs.htm#dbcs_prj

The default for the alTowAl1 setting is false.

com.ibm.hats.common.HostKeypadTag
For the com.ibm.hats.common.HostKeypadTag class, name specifies a customizable
setting:

show If true, shows a host keypad in the application.

(e JCr2 J (e J (e J(Fs J(rs) (F7 J (P8 J (P J(Fo) (F1) (Fr2] (eas] (P14] (Fs J (o6] (Fe7] (i)

[[F19] [F20 | [F21] [F22 | [(F23 | [F24 |[__Attention |[_ Clear J[Ener J[__Pat_J[__PA2][PA3 |
[PageUp || PageDown | [System Request] | AtemateView | [Help | [Reset | [FieldExit || Field Plus | [Field Minus |

6:53
showAltView

If true, shows an AltView key in the host keypad.

showAttention
If true, shows an ATTN key in the host keypad.

showClear
If true, shows a CLEAR key in the host keypad.

showEnter
If true, shows an Enter key in the host keypad.

showF1 - showF24
If true, shows a Function key with the corresponding number in the host
keypad.

showFieldExit
If true, shows a Field Exit key in the host keypad.

showFieldMinus
If true, shows a Field Minus key in the host keypad.

showFieldPlus
If true, shows a Field Plus key in the host keypad.

showHelp
If true, shows a Help key in the host keypad.

showPA1
If true, shows a PA1 key in the host keypad.

showPA2
If true, shows a PA2 key in the host keypad.

showPA3
If true, shows a PA3 key in the host keypad.

showPageDown
If true, shows a Page Down key in the host keypad.

showPageUp
If true, shows a Page Up key in the host keypad.

showPrint
If true, shows a PRINT key in the host keypad for printing output.

showReset
If true, shows a RESET key in the host keypad.

showSystemRequest
If true, shows a SYSREQ key in the host keypad.

Appendix A. HATS Toolkit files 113

style Specifies how keys defined with value=true are displayed in the host
keypad. Valid values are buttons or Tinks. The default is buttons.

com.ibm.hats.common.KeyboardSupport
For the com.ibm.hats.common.KeyboardSupport class, name specifies a
customizable setting:

enable
Specifies whether keyboard support is available in the project. When
keyboard support is enabled, end users can use the physical keyboard keys
to interact with the host. The end user can press certain physical keys that
have been mapped to host aid keys, such as the F1, SYSREQ, RESET, or
ATTN keys. The end user can toggle keyboard support to be disabled if he
wants to use a mapped physical keyboard key to interact with the browser.

Note: This must be set to true to turn on the wizard that allows the HATS
theme to change from the default emulator style to a modern
application style.

initialState
If true, the initial state of the host keyboard is on (the user can interact
with the application using the physical keyboard).

supportAllKeys
If true, all mapped keys are supported, regardless of what buttons or links
are displayed. If false:

* If there are no recognized host functions displayed in the current page
as buttons or links, support all mapped host functions.

* If there are any recognized host function buttons or links, support only
those host functions.

com.ibm.hats.common.OIA
For the com.ibm.hats.common.OIA class, name specifies a customizable setting:

active If true, an operator information area (OIA) is visible in the project. The
default is true.

Note: This must be set to true to turn on the wizard that allows the HATS
theme to change from the default emulator style or to a modern
application style.

appletActive
If true, an indicator is displayed in the OIA if asynchronous update
support is enabled. The default is false.

autoAdvancelndicator
If true, displays in the OIA whether auto-advance is enabled, if it is
supported by the browser. The default is false.

bidiControls
If true, displays in the OIA the current bidirectional controls to indicate
editing status, if they are supported by the browser. The default is true.

cssClass
Specifies the cascading stylesheet (CSS) class name that controls the
appearance of the OIA. The default is statusArea.

cursorPosition
If true, displays in the OIA the absolute cursor position for the host, such
as 1391. The default is false.

114 1BM Host Access Transformation Services: Web Application Programmer's Guide

cursorRowColumn
If true, displays in the OIA the row and column of the host cursor, such as
18/031. The default is true.

fieldData
If true, displays in the OIA field extended data, such as numeric only or
field exit required. The default is false.

inputInhibited
If true, displays in the OIA whether the keyboard is locked, preventing
input from the keyboard. The default is true.

insertMode
If true, displays in the OIA whether overwrite mode is enabled, if it is
supported by the browser. The default is true.

layout Depending on the value attribute, determines how to display the OIA,
either horizontally (across the bottom of the page) or vertically (as a side
frame on the page). The default is horizontal.

msgWaiting
If true, displays an indicator when the host system has one or more
message for the session. The setting is applicable only for 5250 host
systems.

sslCheck
If true, displays in the OIA whether the Host On-Demand connection is
SSL secured. The default is true.

systemWait
If true, displays in the OIA whether the system is locked while waiting for
data to be returned. The default is true.

com.ibm.hats.common.RuntimeSettings
For the com.ibm.hats.common.RuntimeSettings class, name specifies a customizable
setting:

autoEraseFields
Specifies whether modified input fields should have [erasef1d] applied
before modified data is entered into the field. The default value is true. If
the value is set to false, space characters may be used to replace data
already entered in the field by the host.

Notes:

1. Any host field that is rendered as multiple input fields will not be
automatically cleared. For example, long host fields that wrap from one
line to the next are rendered as multiple input fields and will not be
automatically cleared before updating.

2. This setting can only be specified at the project level. It cannot be
specified for a single transformation.

enableAutoAdvance
Specifies whether the cursor moves to the next input field when located at
the end of an input field; that is, when the input field is entirely filled in.
When true, the cursor will move to the next input field when located at
the end of an input field. When false, the cursor does not move to the
next input field unless the user explicitly moves it. The default is false.

enableAutoTabOn
Specifies whether the tab key will move the cursor to the next input field
when the cursor reaches the end of an input field; that is the input field is

Appendix A. HATS Toolkit files 115

entirely filled in. When set to true, based on the order of presentation field
in the browser, the tab key will move cursor in the current field to the next
field when the position of the cursor is at the end of the current field.
When set to false, the tab key does not move to the next input field unless
the user explicitly moves it. The default is false.

enableBusyPage
When set to true, sending multiple requests will be redirected to busy
page behavior. When set to false, sending multiple requests will be
blocked in the client side and busy page is not displayed. The default is
false.

enableCompression
When set to true, enables the HTTP compression filter used to reduce the
number of bytes transferred between the HATS runtime, which runs on the
WebSphere Application Server, and the user's browser. The default is false.

enableSameOriginPolicy
When set to true, enables the CSRF validation filter for same-origin policy
protection security mechanism that restricts how data (a document or
script) loaded from one origin can interact with a resource from another
origin. It restricts the attack from a different source origin to target origin
in the HATS runtime, which runs on the WebSphere Application Server,
and the user's browser. The default is false.

enableTokenProtection
When set to true, enables the CSRF validation filter for token based
protection security mechanism where by a malicious website will send a
request to a HATS web application that a user is already authenticated
against from a different website. This way an attacker can access
functionality in a target web application via the victims already
authenticated browser in the HATS runtime, which runs on the WebSphere
Application Server, and the user's browser. The default is false.

escapeHTMLTags
Specifies whether HTML tag interpretation should be performed for data
on a host screen. If true, then all data is interpreted as simple text. If
false, then data that looks like a valid HTML tag, is treated as such. For
example, if a screen contains data such as, <S>elect, and this setting is
true, the data is interpreted as the simple text, <S>elect. If this setting is
false, the <S> is interpreted as the HTML strikeout tag. The default is
false.

Note: If true, data that matches a valid HTML tag, supplied using the text
replacement function, is treated as simple data.

enableOverwriteMode
If true, text entered into an input field overwrites text at the cursor
position one character at a time. If false, text entered into an input field is
inserted at the cursor position pushing existing text ahead. The user can
toggle from this initial setting using the Insert key. The default is true.

nextFieldForDropDown
If true, the cursor position is moved to the next input field when a
selection is made from a drop-down list. The default for new projects
created in HATS V7.5.0.2, or later, is true. The default for projects created
before HATS V7.5.0.2 is false.

Note: This setting is effective only when enableAutoAdvance is true.

116 IBM Host Access Transformation Services: Web Application Programmer's Guide

selectAllOnFocus
If true, all text in a field is selected when the field receives focus, which is
typical behavior for a Web application. If false, no text is selected when
the field receives focus which is typical behavior for a terminal emulator.

Notes:
1. For Web applications:
e The default is true.

* This setting does not affect the enableOverwriteMode setting
behavior.

* This setting is only valid when Internet Explorer is used as the
browser for the application.

2. For rich client applications:
* The default is false.

* When selected, this setting functions like the enableOverwriteMode
setting in that characters are overwritten as a user types into the
field.

 Text is selected only when the keyboard is used to tab into the field.
Text is not selected when clicking the mouse in the field.

suppressUnchangedData
If true, disables all fields whose contents are the same as when the form
was rendered. If false, sends any field contents received from the browser
to the host even if the current presentation space contents are identical for
that field. The default is false.

com.ibm.hats.transform
For the com.ibm.hats.transform class, name specifies a customizable setting:

alternate
The value DEFAULT if an alternateRenderingSet is specified. Otherwise,
unspecified.

alternateRenderingSet
Specifies the name of the rendering set to use for default rendering if
nothing is found to render during transformation of a HATS component
tag.

com.ibm.hats.transform.components.name
Refer to the [HATS User's and Administrator’s Guide| for descriptions of component
settings.

com.ibm.hats.transform.DefaultRendering

For the com.ibm.hats.transform.DefaultRendering class, name is always
applicationDefaultRenderingSetName. The value specifies the name of the
rendering set defined as the default rendering set for the project. The rendering set
name specified on the value setting must match the value of the default attribute
specified for the <defaultRendering> tag.

com.ibm.hats.transform.widgets.dojo.name
Refer to the [HATS User's and Administrator’s Guide| for descriptions of HATS Dojo
widget settings.

com.ibm.hats.transform.widgets.name
Refer to the [HATS User's and Administrator’s Guide| for descriptions of widget
settings.

Appendix A. HATS Toolkit files 117

ugcwset.htm
ugcwset.htm
ugcwset.htm

<textReplacement> tag

The <textReplacement> tag is the enclosing tag for any text replacement values
you define in the project. This tag has no attributes.

<replace> tag
The <replace> tag specifies the text replacement values in a project.

Note: If you are using a bidirectional code page, refer to |[HATS User’s and)
[Administrator’s Guide|

The attributes of the <replace> tag are:

caseSensitive
Specifies whether the case of text replacement values must match before
text replacement occurs. Valid values are true and false. The default is
false.

from Specifies the text you want to replace. The text on the from attribute must
be enclosed in quotes.

to When replacing text with text or HTML coding (Web only), specifies the
replacement string you want to insert in place of the value specified on the
from attribute. The replacement string on the to attribute must be enclosed
in quotes. If you want to replace the text with a button or a link, the code
for the button or link must be added inside the quotes.

regularExpression
Specifies whether Java regular expression support is used as part of the
text replacement algorithm. A regular expression is a pattern of characters
that describes a set of strings. You can use regular expressions to find and
modify occurrences of a pattern. Valid values are true and false. The
default is false.

toImage
When replacing text with an image, specifies the path and name of the
image you want to insert in place of the value specified on the from
attribute. The path and name of the image on the toImage attribute must
be enclosed in quotes.

matchLTR
When using a bidirectional code page, specifies whether the value specified
on the from attribute is replaced on left-to-right screens. Valid values are
true and false. The default is true.

matchRTL
When using a bidirectional code page, specifies whether the value specified
on the from attribute is replaced on right-to-left screens. Valid values are
true and false. The default is false.

matchReverse
When using a bidirectional code page, specifies whether the value specified
on the from attribute is replaced when the section of the screen in which it
appears has been reversed from the original direction of the page. Valid
values are true and false. The default is false.

Note: Care should be taken when using text replacement. Text replacement with a
disparate number of characters in the strings can cause changes in the

118 IBM Host Access Transformation Services: Web Application Programmer's Guide

ugbidi.htm
ugbidi.htm

representation of the screen. Depending on the widget used for presenting a
region of a screen, text on a line of the screen can be contracted, expanded,
or forced to a new line.

<defaultRendering> tag

The <defaultRendering> tag is the enclosing tag for all rendering sets you define in
the project.

The attribute of the <defaultRendering> tag is:

default
Specifies the name of the rendering set to use for default rendering in the
project. The rendering set name specified on the default attribute must
match the value specified for the value attribute of the class setting named
com.ibm.hats.transform.DefaultRendering.

<renderingSet> tag

The <renderingSet> tag is the enclosing tag for rendering items defined in the
rendering set.

The attributes of the <renderingSet> tag are:
name The name specified for the rendering set when it was created.

description
The description specified for the rendering set when it was created.

layout Indicates whether to use compact rendering, which eliminates unnecessary
blanks in fields and text on the transformed screen. This attribute should
only be used if you want your default rendering to be compacted. The
only valid value for layout is COMPACT. By default, a rendering set does
not specify this attribute and does not use compact rendering.

separated
Indicates whether to render the output using inline span tags to
differentiate between fields and reduce the amount of HTML and blank
space on the transformed screen. This is the default for Web applications
optimized for mobile devices. By default, a rendering set does not specify
this attribute.

table Indicates whether to render the output in a table and preserve the layout
of the original host screen. This is the default for Web applications not
optimized for mobile devices.

<renderingltem> tag
The <renderingltem> tag is the enclosing tag for a specific rendering item.

The attributes of the <renderingltem> tag are:

componentldentifier
The name of the rendering item used to coordinate component information
with the transformation. The default setting is the name of the screen
combination event.

associatedScreen
The name of the captured screen used to create this rendering item.

description
The description entered when the rendering item was created.

Appendix A. HATS Toolkit files 119

enabled
Indicates whether this rendering item is enabled. Reflects the state of the
check box on the Rendering page of Project Settings.

endCol
The last column of the host screen to which this rendering item should be
applied. -1 means the rightmost column of the host screen.

endRow
The last row of the host screen to which this rendering item should be
applied. -1 means the bottom row of the host screen.

startCol
The first column of the host screen to which this rendering item should be
applied.

startRow
The first row of the host screen to which this rendering item should be
applied.

type The host component whose contents will be transformed. The attribute
value is the full class name of the host component. There is no default
value for this required attribute.

widget
The widget into which the host component will be transformed.
The following tags are also included in each specific rendering item:

componentSettings
The <componentSettings> tag is the enclosing tag for any settings modified
for the component for this rendering item. This tag has no attributes.

setting
The <setting> tag is the enclosing tag for any settings modified for the
component for this rendering item.

The attributes of the <setting> tag are:

name Specifies the name of a customizable setting for the component.
The available settings depend on the component.

Refer to [HATS User’s and Administrator’s Guide| for descriptions of
component settings.

value Specifies the value of a customizable setting for the component.
The default values vary depending on the setting.

widgetSettings
The <widgetSettings> tag is the enclosing tag for any settings modified for
the widget for this rendering item. This tag has no attributes.

setting
The <setting> tag is the enclosing tag for any settings modified for the
widget for this rendering item.

The attributes of the <setting> tag are:

name Specifies the name of a customizable setting for the widget. The
available settings depend on the widget.

Refer to |[HATS User’s and Administrator's Guide| for descriptions of
widget settings.

120 IBM Host Access Transformation Services: Web Application Programmer's Guide

ugcwset.htm
ugcwset.htm

value Specifies the value of a customizable setting for the widget. The
default values vary depending on the setting.

textReplacements

replace

The <textReplacements> tag is the enclosing tag for any text replacement
specified for this rendering item. This tag has no attributes.

The <replace> tag specifies the text replacement values for this rendering
item.

The attributes of the <replace> tag are:

caseSensitive
Specifies whether the case of text replacement values must match
before text replacement occurs. Valid values are true and false.
The default is false.

from Specifies the text you want to replace. The text on the from
attribute must be enclosed in quotes.

to Specifies the replacement string you want to insert in place of the
value specified on the from attribute. The replacement string on
the to attribute must be enclosed in quotes.

regularExpression
Specifies whether Java regular expression support is used as part
of the text replacement algorithm. A regular expression is a pattern
of characters that describes a set of strings. You can use regular
expressions to find and modify occurrences of a pattern. Valid
values are true and false. The default is false.

toImage
When replacing text with an image, specifies the path and name of
the image you want to insert in place of the value specified on the
from attribute. The path and name of the image on the toImage
attribute must be enclosed in quotes.

matchLTR
When using a bidirectional code page, specifies whether the value
specified on the from attribute is replaced on left-to-right screens.
Valid values are true and false. The default is true.

matchRTL
When using a bidirectional code page, specifies whether the value
specified on the from attribute is replaced on right-to-left screens.
Valid values are true and false. The default is false.

matchReverse
When using a bidirectional code page, specifies whether the value
specified on the from attribute is replaced when the section of the
screen in which it appears has been reversed from the original
direction of the page. Valid values are true and false. The default
is false.

Note: Care should be taken when using text replacement. Text replacement
with a disparate number of characters in the strings can cause
changes in the HTML representation of the screen. Depending on
the widget used for presenting a region of a screen, text on a line of
the screen can be contracted, expanded, or forced to a new line.

Appendix A. HATS Toolkit files 121

<globalRules> tag

The <globalRules> tag is the enclosing tag for any global rules you define in the
project. It has no attributes.

<rule> tag
The <rule> tag defines a global rule.

The attributes of the <rule> tag for project-level rules are the same as for screen
customization-level global rules. However, when you create a project-level and a
screen customization-level global rule using the same input field, the screen
customization-level rule will have a higher priority. The <rule> tag attributes are:

associatedScreen
The name of a screen capture in the project, from which the global rule is
defined.

description
The description entered when the global rule was created.

enabled
Indicates whether this global rule is enabled. Reflects the state of the check
box on the Rendering page of Project Settings.

endCol
The last column of the host screen to which this global rule should be
applied. -1 means the rightmost column of the host screen.

endRow
The last row of the host screen to which this global rule should be applied.
-1 means the bottom row of the host screen.

name The name that will be shown in the list of global rules on the Rendering
page of Project Settings.

startCol
The first column of the host screen to which this global rule should be
applied.

startRow
The first row of the host screen to which this global rule should be
applied.

transformationFragment
The name of the transformation fragment file associated with this global
rule. This file contains the information specifying how to transform the
host component. It will be included in a transformation if the appropriate
input fields are present in the host screen.

type The pattern type component for this global rule, taken from the first page
of the Create Global Rule wizard. The type can be one of the following:

com.ibm.hats.transform.components. InputFieldByTextPatternComponent
This pattern component recognizes input fields on the host screen
based on text near the fields.

com.ibm.hats.transform.components. AllInputFieldsPatternComponent
This pattern component recognizes all input fields on the host
screen.

122 IBM Host Access Transformation Services: Web Application Programmer's Guide

com.ibm.hats.transform.components.
InputFieldBySizePatternComponent
This pattern component recognizes input fields on the host screen
based on the size of the input fields.

com.ibm.hats.transform.components.
InputFieldByPositionPatternComponent
This pattern component recognizes input fields on the host screen
by the field's position on the host screen.

The following tags are also included in each specific global rule:

componentSettings
The <componentSettings> tag is the enclosing tag for any settings defined
for the pattern type component specified on the type attribute of the
<rule> tag. This tag has no attributes.

setting
The <setting> tag is the enclosing tag for any settings defined for the
pattern type component specified on the type attribute of the <rule> tag.

The attributes of the <setting> tag are:

name Specifies the name of a customizable setting for the pattern type
component. The available settings depend on the component.

* For the
com.ibm.hats.transform.components.InputFieldByTextPattern
Component, the settings for the name attribute are:

caseSensitive
Specifies whether the case of the text on the text setting
must match before the pattern is recognized. Valid
values are true and false. The default is true.

immediatelyNextTo
Specifies which input fields you want to transform.Valid
values are:

true Specifies that only the nearest input field should
be transformed.

false Specifies that all input fields should be
transformed.

The default is false.

location
Specifies where text in a protected field, as specified on
the text setting, must be in relation to input fields for
this global rule to be applied. Valid values are:

ABOVE
Specifies that the text must be above the input
field.

BELOW
Specifies that the text must be below the input
field.

LEFT Specifies that the text must be to the left of the
input field.

Appendix A. HATS Toolkit files 123

RIGHT
Specifies that the text must be to the right of the
input field.

The default is RIGHT.

text Specifies some text in a protected field of the host screen.
Valid values are any text in a protected field on the host
screen.

* For the
com.ibm.hats.transform.components. AlllnputFieldsPattern
Component, there are no component settings.

* For the
com.ibm.hats.transform.components.InputFieldBySizePattern
Component, the setting for the name attribute is fieldSize.Valid
values are the sizes of any input fields on the host screen.

* For the com.ibm.hats.transform.components.
InputFieldByPositionPatternComponent, the setting for the name
attribute is enableFieldLength. Valid values are true and false.

Note: When enableFieldLength is specified, the entire field (as
specified by the fieldSize attribute) must be within the
defined region boundary in order for the field to be
recognized. The region boundary is defined by the values
for the startRow, endRow, startCol and endCol attributes.

Connection files (.hco)

Each connection that you define in a HATS project is represented by a connection
file. The connection (.hco) files are stored in the project name/Connections folder,
where project_name is the name you gave the project when you created it. The
default connection, which is created using the connection values that you specify
in the New HATS Project wizard, is stored in main.hco.

<hodconnection> tag

The <hodconnection> tag begins the connection definition and specifies several
characteristics for the connection.

The attributes of the <hodconnection> tag are:

certificateFile
Specifies the name of the file from which the project's SSL certificate was
imported, if any.

codePage
Specifies the numeric value for the code page used on this connection. The
default value is the value you selected when you created the project. Each
connection can use a different code page. See the description of the
codePageKey attribute for the code page numbers.

codePageKey
Specifies the usage key that corresponds to the numeric code page. The
default value is KEY_US. Valid values for codePage and the location or
usage key are:

124 IBM Host Access Transformation Services: Web Application Programmer's Guide

Table 6. Code pages and usage keys

Code page Usage key

037 KEY_BELGIUM
KEY_BRAZIL
KEY_CANADA
KEY_NETHERLANDS
KEY_PORTUGAL
KEY_US

273 KEY_AUSTRIA
KEY_GERMANY

274 KEY_BELGIUM_OLD

275 KEY_BRAZIL_OLD

277 KEY_DENMARK
KEY_NORWAY

278 KEY_FINLAND
KEY_SWEDEN

280 KEY_ITALY

284 KEY_SPAIN
KEY_LATIN_AMERICA

285 KEY_UNITED_KINGDOM

297 KEY_FRANCE

420 KEY_ARABIC

424 KEY_HEBREW

500 KEY_MULTILINGUAL

803 KEY_HEBREW_OLD

838 KEY_THAI

870 KEY_BOSNIA_HERZEGOVINA
KEY_CROATIA
KEY_CZECH
KEY_HUNGARY
KEY_POLAND
KEY_ROMANIA
KEY_SLOVAKIA
KEY_SLOVENIA

871 KEY_ICELAND

875 KEY_GREECE

924 KEY_MULTILINGUAL_ISO_EURO

930 KEY_JAPAN_KATAKANA

933 KEY_KOREA_EX

937 KEY_ROC_EX

939 KEY_JAPAN_ENGLISH_EX

1025 KEY_BELARUS
KEY_BULGARIA
KEY_MACEDONIA
KEY_RUSSIA
KEY_SERBIA_MONTEGRO

1026 KEY_TURKEY

1047 KEY_OPEN_EDITION

Appendix A. HATS Toolkit files

125

Table 6. Code pages and usage keys (continued)

Code page

Usage key

1112

KEY_LATVIA
KEY_LITHUANIA

1122

KEY_ESTONIA

1123

KEY_UKRAINE

1137

KEY_HINDI

1140

KEY_BELGIUM_EURO
KEY_BRAZIL_EURO
KEY_CANADA_EURO
KEY_NETHERLANDS_EURO
KEY_PORTUGAL_EURO
KEY_US_EURO

1141

KEY_AUSTRIA_EURO
KEY_GERMANY_EURO

1142

KEY_DENMARK_EURO
KEY_NORWAY_EURO

1143

KEY_FINLAND_EURO
KEY_SWEDEN_EURO

1144

KEY_ITALY_EURO

1145

KEY_LATIN_AMERICA_EURO
KEY_SPAIN_EURO

1146

KEY_UNITED_KINGDOM_EURO

1147

KEY_FRANCE_EURO

1148

KEY_MULTILINGUAL_EURO

1149

KEY_ICELAND_EURO

1153

KEY_BOSNIA_HERZEGOVINA_EURO
KEY_CROATIA_EURO
KEY_CZECH_EURO
KEY_HUNGARY_EURO
KEY_POLAND_EURO
KEY_ROMANIA_EURO
KEY_SLOVAKIA_EURO
KEY_SLOVENIA_EURO

1154

KEY_BELARUS_EURO
KEY_BULGARIA_EURO
KEY_MACEDONIA_EURO
KEY_RUSSIA_EURO
KEY_SERBIA_MONTEGRO_EURO

1155

KEY_TURKEY_EURO

1156

KEY_LATVIA_EURO
KEY_LITHUANIA_EURO

1157

KEY_ESTONIA_EURO

1158

KEY_UKRAINE_EURO

1160

KEY_THAI EURO

1166

KEY_KAZAKHSTAN_EURO

1364

KEY_KOREA_EURO

1371

KEY_ROC_EURO

1388

KEY_PRC_EX_GBK

126 IBM Host Access Transformation Services: Web Application Programmer's Guide

Table 6. Code pages and usage keys (continued)

Code page Usage key

1390 KEY_JAPAN_KATAKANA_EX_EURO

1399 KEY_JAPAN_ENGLISH_EX_EURO
connecttimeout

Specifies the time that HATS attempts to connect to a host. Specify a
number of seconds between 1 and 2147483647. The initial default is 120
seconds.

description
Specifies the description for the connection when it was created.

disableFldShp
When using a bidirectional code page, specifies whether you want Arabic
data in password fields submitted to the host in isolated form or in shaped
form. Valid values are true and false. There is no initial default.

disableNumSwapSubmit
When using a bidirectional code page, specifies whether you want to
disable entry of Arabic-Western numbers, that is, allow entry of only
Arabic-Indic numbers in RTL screens. Do this so that, when submitted, all
numbers are submitted as Arabic-Western numbers. Valid values are true
and false. There is no initial default.

disconnecttimeout
Specifies the time that HATS attempts to disconnect from a host. Specify a
number of seconds in the range of 1-2147483647. The initial default is 120
seconds.

enableScrRev
When using a bidirectional code page, specifies which pages of an
application should display a Screen Reverse button to enable users to
reverse the direction of displayed text and input fields. Valid values are:

(blank)
The Screen Reverse button is not placed on any screens.

Customized
The Screen Reverse button is placed on screens that match a
screen customization and on screens that do not match a screen
customization, in other words, on all screens. There is no option to
place the Screen Reverse button only on screens that match a
screen customization.

Non-customized
The Screen Reverse button is placed only on screens that do not
match a screen customization.

There is no initial default.

host Specifies the name of the host to which the connection is made.

hostSimulationName
Specifies the name of the host simulation trace file to use instead of a live
connection.

LUName
Valid only on enhanced 3270 sessions (TNEnhanced="true"). Sets the
LUName property, which is the LU name used during enhanced

Appendix A. HATS Toolkit files 127

negotiation. Values are in string format. Maximum length of LUName is 17
characters. There is no default. To configure print support for your 3270
HATS project, you must specify that the host type is 3270E. When you add
the LUName parameter to the list of connection settings, do not use the
printer LU name; use the name of your display LU or a pool of display
LUs.

LUNameSource
Valid only on enhanced 3270 sessions (TNEnhanced="true"). Specifies the
source of the LU name for the connection. Valid values are:

automatic
The LU name is automatically assigned when the connection is
established.

prompt
Prompt the end user for the LU name. If pooling is enabled,
prompt should not be used.

session
The LU name is defined using an HTTP session variable. The
LUName attribute names the session variable. If pooling is
enabled, session should not be used.

value The LU name is defined on the LUName attribute.

There is no initial default.

port Specifies the number of the port through which the connection to the host
is made. The valid range for ports is 0-65535. The initial default is 23.

screenSize
Specifies the number of rows and columns that the host terminal displays.
Valid values for screenSize are:

. 2=24x80

* 3=32x80

. 4=43x80

. 5=27x132

* 6=24x132 (VT only)

The initial default screen size is 24 x 80.

sessionType
Specifies the type of terminal the host terminal displays. Valid values for
type are:

* 1=3270
e 2=5250
e 3=VT

The initial default is 3270.

singlelogon
When user lists are defined in the project, specifies whether a user ID can
be used more than once at a time. Valid values are:

true The user ID can be used only once at a time.

false The user ID can connect multiple times simultaneously.

The initial default is false.

128 IBM Host Access Transformation Services: Web Application Programmer's Guide

SSL Specifies whether SSL is enabled. Valid values are:
true SSL is enabled for the project.
false SSL is not enabled for the project.

TNEnhanced
Valid only on 3270 connections. Specifies whether the connection is a
TN3270E connection. Valid values are true and false. The initial default is
true.

VTTerminalType
Valid only on VT connections. Indicates the type of VT terminal. Valid
values are:
s 1=VT420_7
* 2=VT420_8
* 3=VT100
s 4=VT52

WFEnabled
Valid only on 5250 connections. Specifies whether the connection is a
5250W connection. Valid values are true and false. The initial default is
false.

workstationID
Valid only on 5250 and 5250W connections. When the workstationIDSource
attribute is set to either session or value, specifies the HTTP session
variable or the workstation ID for the connection. There is no initial
default.

workstationIDSource
Valid only on 5250 and 5250W connections. Specifies the source of the
workstation ID for the connection. Valid values are:

automatic
The workstation ID is automatically assigned when the connection
is established.

prompt
Prompt the end user for the workstation ID. If pooling is enabled,
prompt should not be used.

session
The workstation ID is defined using an HTTP session variable. The
workstationID attribute names the session variable. If pooling is
enabled, session should not be used.

value The workstation ID is defined on the workstationID attribute.

There is no initial default.

<otherParameters> tag

The <otherParameters> tag specifies additional Host On-Demand session
parameters.

Host On-Demand session parameters supported by HATS include:

ENPTUI
Determines whether a project with a connection to a 5250 host can use

Appendix A. HATS Toolkit files 129

display data stream (DDS) keywords for the Enhanced Non-Programmable
Terminal User Interface (ENPTUI). Valid values are true and false. The
default value is false.

HTMLDDS
Determines whether a project with a connection to a 5250 host can use
HTML fragments along with the 5250 display data stream (DDS). This
feature is not intended for display with standard emulation programs; it is
only sent to 5250 Workstation Gateway devices, and host access products
such as HATS, that have been enhanced to show this HTML data in a
browser HTML DDS is available as a component when the host type is
specified as 5250. The use of this component is not part of the default
rendering and must be added to either the default rendering or custom
transformations. Valid values are:

 Ignore DDS data using filter
* Accept DDS data using filter
For further information, see the HATS User's and Administrator's Guide or

HATS Knowledge Center at |http://www.ibm.com/ support/ |
[knowledgecenter /SSXKAY_9.6.0]

Lamalef
Sets the LamAlef property, which determines whether LamAlef should be
expanded or compressed. This property applies to Arabic sessions only.
Values are in string format. Valid values are:

« LAMALEF_ON
« LAMALEF OFF

The default value is LAMALEF_OFFE.

numeralShape
Sets the numeralShape property. This property applies to bidirectional
sessions only. Values are in string format. The default value is NOMINAL.

numericSwapEnabled
Sets the Numeric swapping property. This property applies to Arabic 3270
sessions only. Valid values are true and false. The default value is true.

roundTrip
Sets the roundTrip property. This property applies to bidirectional sessions
only. Values are in string format. Valid values are:

* ROUNDTRIP_ON
* ROUNDTRIP_OFF

The default value is ROUNDTRIP_ON.

SecurityProtocol
Sets the SecurityProtocol property, which indicates whether to use the TLS
v1.0 protocol or the SSL protocol for providing security. Values are in string
format. The default value is TLS.

SSLServerAuthentication
Sets the SSLServerAuthentication property, which indicates whether SSL
server authentication is enabled. Valid values are true and false. The
default value is false.

symmetricSwapEnabled
Sets the symmetric swapping property. This property applies to Arabic
3270 sessions only. Valid values are true and false. The default value is
true.

130 IBM Host Access Transformation Services: Web Application Programmer's Guide

http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0
http://www.ibm.com/support/knowledgecenter/SSXKAY_9.5.0

textOrientation
Sets the textOrientation property. This property applies to bidirectional
sessions only. Values are in string format. Valid values are:

* LEFT _TO_RIGHT
* RIGHT_TO_LEFT

The default value is LEFT_TO_RIGHT.

ThaiDisplayMode
Sets the Thai display mode property. This property applies to Thai sessions
only. Values are in string format. The default value is THAI_ MODE_5.

workstationID
Sets the workstationID property, which is used during enhanced
negotiation for 5250. Values are in string format. All lowercase characters
are converted to uppercase. There is no default value.

<classSettings> tag

The <classSettings> tag is the enclosing tag for the Java classes you include in the
connection definition.

<class> tag

The <class> tag specifies a class whose attributes are defined in the enclosed
<settings> tags.

The attributes of the <class> tag are:

name Specifies one of the following Java classes:
* com.ibm.hats.common.HATSPrintSettings

* com.ibm.hats.common.NextScreenSettings

The class names on the name attribute must be enclosed in quotes.

<setting> tag

The <setting> tag specifies the settings associated with the class in which the
<setting> tag is enclosed.

The attributes of the <setting> tag are:

name Specifies the name of a customizable setting for the class defined by the
name attribute of the <class> tag. The available settings depend on the
class.

For the com.ibm.hats.common.HATSPrintSettings class, the customizable
settings are:

printFontName
Specifies the font in which you want your output printed. Valid
values depend on the value of the codePage attribute.

printNumSwapSupport
Specifies whether numeric swapping is enabled. This property
applies to Arabic 3270 sessions only, when printRTLSupport is
enabled. English numerals are replaced by Arabic numerals in
right-to-left screens and Arabic numerals are replaced by English
numerals in right-to-left Screens. Valid values are true and false.
The default value is true.

Appendix A. HATS Toolkit files 131

printOrientation
Specifies how your printed output is positioned on the page. Valid
values for printOrientation are:

PDF_ORIENTATION_PORTRAIT
Orients the paper vertically.

PDF_ORIENTATION_LANDSCAPE
Rotates the paper 90 degrees clockwise.

printPaperSize
Specifies the size of the paper on which to print your output. Valid
values for printPaperSize are:

ISO_A3
ISO/DN & JIS A4, 297 x 420 mm

ISO_A4
ISO/DN & JIS A4, 210 x 297 mm

ISO_A5
ISO/DN & JIS A4, 148 x 210 mm

ISO_B4
ISO/DN B4, 250 x 353 mm

ISO_B5
ISO/DN BS5, 176 x 250 mm

JIS_B4
JIS B4, 257 x 364 mm

JIS_B5
JIS B5, 182 x 257 mm

ISO_C5
ISO/DN C5, 162 x 229 mm

ISO_DESIGNATED_LONG
ISO/DN Designated Long, 110 x 220 mm

EXECUTIVE
Executive, 7 1/4 x 10 1/2 in

LEDGER
Ledger, 11 x 17 in

NA_LETTER
North American Letter, 8 1/2 x 11 in

NA_LEGAL
North American Legal, 8 1/2 x 14 in

NA_NUMBER_9_ENVELOPE
North American #9 Business Envelope, 3 7/8 x 8 7/8 in

NA_NUMBER_10_ENVELOPE
North American #10 Business Envelope, 4 1/8 x 9 1/2 in

MONARCH_ENVELOPE
Monarch Envelope, 37/8 x7 1/2 in

CONTINUOUS_80_COLUMNS
Data Processing 80 Columns Continuous Sheet, 8 x 11 in

132 IBM Host Access Transformation Services: Web Application Programmer's Guide

CONTINUOUS_132_COLUMNS
Data Processing 132 Columns Continuous Sheet, 13 1/5 x
11 in

printRTLSupport
Specifies whether right-to-left print support is enabled. This
property applies to Arabic 3270 sessions only. Bidirectional files can
be either RTL or LTR files. Valid values are true and false. The
default value is true.

printSupport
Specifies whether your project includes print capability. Valid
values for printSupport are true and false. The initial default is
false.

printSymSwapSupport
Specifies whether symmetric swapping is enabled; swapping
characters are swapped in right-to-left screens. This property
applies to Arabic 3270 sessions only, when printRTLSupport is
enabled. Valid values are true and false. The default value is
true.

printURL
Specifies the URL for a System i® Access for Web Printer Output
window on a 5250 server. The default URL is http:/ /hostname/
webaccess/iWASpool, where hostname is the name of the 5250
server.

The customizable settings for the com.ibm.hats.common.NextScreenSettings
class are:

default.appletDelayInterval
Specifies the maximum time (in milliseconds) that the server waits
until a full host screen has arrived for a session running in
asynchronous update mode. The initial default value is 400
milliseconds.

default.blankScreen
Specifies how to handle a blank screen received at connection
startup. Valid values are:

normal
Display the blank screen.

sendkeys
Send the host key defined on the default.blankScreen keys
setting.

timeout
Wait for the connection to time out before issuing an error
message.

The default is normal.

default.blankScreen.keys
Specifies the host key to send when default.blankScreen is set to
sendkeys.

default.delayInterval
Specifies the maximum time, in milliseconds, that the server waits
for the arrival of screen updates after the initial screen update. The
initial default value is 1200 milliseconds.

Appendix A. HATS Toolkit files 133

default.delayStart
Specifies the minimum time (in milliseconds) that the server waits
until the first full host screen has arrived after the host connection
becomes ready. The initial default value is 2000 milliseconds.

nextScreenClass
Specifies a class that turns off the default, speed-optimized,
algorithm in favor of accuracy. The class for the value attribute is
com.ibm.hats.runtime.TimingNextScreenBean. As a result, screen
transitions might be slower. The setting default.delayInterval is
now the minimum amount of time (in milliseconds) per screen
transition. The default.delayInterval value has a default of 1200
milliseconds, but you can customize it for your network and your
host application. If you raise this value, remember that HATS waits
at least this long for the host screen to settle.

oiaLockMaxWait
Specifies the maximum time (in milliseconds) that HATS should
wait after the host screen has settled to ensure that the OIA system
lock status has been released. The value can be in the range of
0-600000 milliseconds. The initial default value is 300000
milliseconds.

value The values for the settings are included in the description of the individual
settings.

<poolsettings> tag

The <poolsettings> tag defines pooling parameters for the connection.

The attributes of the <poolsettings> tag are:

enabled
Specifies whether pooling is enabled for this connection. Valid values for
enabled are true and false. The initial default is false.

maxbusytime
The number of seconds before a connection that is in use by an end user
will be terminated. If you do not want active connections to end, set this
field to -1. This setting is available for connections that have pooling
enabled as well as for connections that have pooling disabled. For a
connection with pooling enabled, the connection returns to the pool if the
number of available connections in the pool is less than the minimum
number of connections you specified to remain connected. Otherwise, this
connection is discarded. For a connection with pooling disabled, the
connection is discarded. Valid number of seconds is -1 or in the range of
60-2147483647. The default is -1 (no maximum busy time).

maxconnections
The maximum number of connections in the pool that can be active. This
setting is available only for connections that have pooling enabled. Valid
number of connections is in the range of 1-2147483647. The default is 1.
When you reach the maximum specified and an additional request for a
connection is received, HATS can either wait for the next available
connection or create a new connection.

maxidletime
The number of seconds before a connection that is not in use by an end
user will be terminated and removed from the pool. If you do not want
inactive connections to end, set this field to -1. This setting is available

134 IBM Host Access Transformation Services: Web Application Programmer's Guide

only for connections with connection pooling enabled. The minimum
number of connections you specify remain connected, whether or not they
are used. Valid number of seconds is -1 or in the range of 60-2147483647.
The default is -1 (no maximum idle time).

minconnections
The number of idle connections in the pool that remain connected. This
setting is available only for connections that have pooling enabled and
have the maxidletime before disconnection set to some value other than -1.
Valid number of connections is between 0 and 2147483647. The default is 0
(do not keep connections connected).

overflowallowed
Whether a new, non-pooled connection should be created if the maximum
limit of connections has been reached. If this value is false, you must
specify the number of seconds to wait for a pooled connection to become
available. If the time to wait elapses and a connection does not become
available, HATS returns an error. If this value is true, a new, non-pooled
connection will be created. When the end user finishes with this type of
connection, it is not put back in the pool, but discarded.

waittimeout
The number of seconds to wait for a pooled connection to become
available once the maximum limit of connections has been reached, and
another request comes in. Valid number of seconds is between 0 and
2147483647, or -1 if you want to wait forever. The default is 120.

<webexpresslogon> tag

The <webexpresslogon> tag indicates whether the Web Express Logon function is
enabled for this connection.

The attribute of the <webexpresslogon> tag is:

enabled
Specifies whether the Web Express Logon function is enabled for this
connection. Valid values for enabled are true and false. The initial default
is false.

<userconfig> tag

The <userconfig> tag defines a user list for the connection. The tags and data
within the <userconfig> tag are complex and can be corrupted by manual editing.
To protect the integrity of your user list, do not manually edit the <userconfig>
data. Instead, use the User List tab on the Connection editor to create or modify a
user list. By default, a host connection does not specify this tag and does not have
a user list.

Template and transformation files (.jsp)

These JavaServer Pages (JSP) files contain HTML and JSP tagging to define how
your project appears in the end user's browser.

The template jsp files are stored in the project_name/Web Content/Templates
directory. The transformation .jsp files are stored in the project_name/Web
Content/Transformations directory. You can view and edit the source of the .jsp
files by double-clicking on the name of the template or transformation in the
HATS Project View to open the JSP editor. The source for the file can be viewed
by clicking on the Source tab.

Appendix A. HATS Toolkit files 135

You can modify the template and transformation files using either the Design or
the Source tabs in the JSP editor. When you make a change on one tab, the affected
information on the other tab is automatically updated.

A template jsp file contains HTML tagging to define links and images for the
project page. The template .jsp file also contains a <HATS:Transform> tag that
defines the transformation to be used with the template to present the page of
your project.

A transformation .jsp file contains HTML tags to describe the layout of the
information presented to the user of the project in a Web browser. The
transformation .jsp file may also contain <HATS:Component> tags that define
HATS components and widgets used to present the page of your project. For more
information on the <HATS:Component> tag, see [“HATS component tag and|
[attributes” on page 17,

Screen combination files (.evnt)

The screen combination files defines how a host screen is recognized, the actions
HATS performs when a screen is recognized, how to define the end of the screen
combination, and how to navigate between screens. The screen combination (.evnt)
files are stored in the project_name/Web Content/WEB-INF/profiles/events/
screencombinations directory. You can view and edit the source of the screen
combination files by double-clicking on the name of the screen combination in the
HATS Projects view to open the screen combination editor. The source for the file
can be viewed by clicking on the Source tab. You can modify screen combination
files using the Begin Screen, Render, Navigation, End Screen, Actions, Text
replacement, or Source tabs in the editor. HATS Toolkit updates the affected
information on other tabs when you make changes on any tab. The screen
combination event files contain tags to define how a host screen is recognized and
the actions and navigations that will occur when the host screen is recognized.

Screen combination adds several tags to those found in screen customization
(-evnt) files.

<combinations> tag

This is the container for the combination information. It consists of a type attribute
and a rendering item detailing the screen combination component.

type The type parameter determines how the screen transformation will be
aggregated.

If the string value is set to dynamic, the screen transformation can add
screens to the combined area while the user is using the screen
transformation.

If the string value is set to normal or is missing, the individual screens
compound prior to allowing the user to interact with the screen
transformation. Rich Client screen combinations are limited to normal
processing.

<enddescription> tag

This is the description for the screen criteria used to determine if the screen
combination end screen has been reached. The tags and details match the
description tag. It has an attribute associatedScreen for the screen associated with
the end screen.

136 IBM Host Access Transformation Services: Web Application Programmer's Guide

associatedScreen
This is the screen capture associated with the end screen.

<navigation> tag

The navigation contains the commands needed to move between screens to gather
and place data. It consists of a screenUp and screenDown tag.

<screenUp> tag

The commands necessary to traverse to a screen backward in the combination. This
is used to return data to the correct place in a screen combination. It can consist of
keyPress, setCursor, and sendText tags.

<screenDown> tag

The commands necessary to traverse to a screen forward in the combination. This
is used to create the screen combination view as well as return data to the correct
place in a screen combination. It can consist of keyPress, setCursor, and sendText
tags.

<keyPress> tag

This navigation command is the equivalent of a sendKey. It has a value attribute,
which must be a valid HOD key command, for the HOD command to send.

value The value attribute for the keyPress tag should be a valid HOD key
command.

<setCursor> tag

This navigation command allows cursor positioning on the screen. It has a row
and a column attribute for the cursor positioning.

row The row attribute should be a 1-based integer that equates to a position on
the screen. This positions the vertical component of the cursor position.

column
The column attribute should be a 1-based integer that equates to a position
on the screen. This positions the horizontal component of the cursor
position.

<sendText>

This navigation command is the equivalent of a sendKey. It has a value attribute,
which must be valid text for the host field, for the text to send.

value The value attribute for the sendText tag should be valid text for the host
field.

Screen customization files (.evnt)

The screen customization files define how a host screen is recognized, and also
defines the actions HATS performs when a screen is recognized.

The screen customization (.evnt) files are stored in the project_name/Web
Content/WEB-INF/profiles/events/screencustomizations directory. You can view
and edit the source of the screen customization files by double-clicking on the
name of the screen customization in the HATS Project View to open the screen
customization editor. The source for the file can be viewed by clicking on the
Source tab.

Appendix A. HATS Toolkit files 137

You can modify screen customization files using the Screen Recognition Criteria,
Actions, Text replacement, or Source tabs in the editor. HATS Toolkit updates the
affected information on other tabs when you make changes on any tab.

The screen customization event files contain tags to define how a host screen is
recognized and the actions that will occur when the host screen is recognized.

<event> tag

Begins the definition of the screen customization. The event tag has the following
attributes:

description
If you supplied a description of the screen customization when you created
it, that description is defined in this attribute.

type For a screen customization, type is always screenRecognize. For combined
screens, type is screenCombination.

<actions> tag

This is the enclosing tag for all of the actions defined for a screen customization. It
has no attributes.

<apply> tag
Defines the action for applying a transformation. The attributes of the <apply> tag
are:

applyGlobalRules
Specifies whether HATS should look for global rules on this host screen.
Default is true.

applyTextReplacement
Specifies whether HATS should look for text replacements on this host
screen. Default is true. See the <replace> tag for further information on
how to use text replacement.

enabled
Indicates whether this action is enabled for use. The default is true.

immediateKeyset
Defines the host keys sent to the host immediately when pressed by the
end user of your project. If you did not define any host keys to be sent to
the host immedjiately, this attribute has an empty value.

template
Names the template file that surrounds the transformation being applied. If
the default template is being used to surround the transformation, this
attribute has an empty value.

transformation
Names the transformation file that is to be applied for this action.

<insert> tag

Defines the action for inserting a global variable or a string. The attributes of the
<insert> tag are:

enabled
Indicates whether this action is enabled for use. The default is true.

138 IBM Host Access Transformation Services: Web Application Programmer's Guide

row

col

source

value

fill

index

shared

Defines the starting row on the host screen where the value is to be
inserted.

Defines the starting column on the host screen where the value is to be
inserted.

Specifies whether the value to be inserted is a string or the value of a
global variable. Valid values are string and variable.

Specifies either the string to be inserted onto the host screen or the name
of a global variable from which the value is taken.

If the source of the value to be inserted is an indexed global variable, fill
specifies whether the indices of the global variable are to be concatenated
and inserted at the specified position, or inserted into a rectangular region
of the host screen. Valid values are concatenate and rectangular.

If the source of the value to be inserted is an indexed global variable, index
specifies the number of the index that is to be used as the value to be
inserted onto the host screen.

If the source of the value to be inserted is a global variable, shared
specifies whether this global variable is shared between all the applications
in the same EAR file.

<extract> tag
Defines the action for extracting a global variable. The attributes of the <extract>

tag are:
enabled
Indicates whether this action is enabled for use. The default is true.
srow Defines the starting row on the host screen of the text being extracted.
erow Defines the ending row on the host screen of the text being extracted.
scol Defines the starting column on the host screen of the text being extracted.
ecol Defines the ending column on the host screen of the text being extracted.
name Specifies the name of the global variable to which the text is extracted. This
can be an existing global variable or a new global variable.
overwrite
Specifies whether the text extracted is to overwrite the value of an existing
global variable. Valid values are true and false.
indexed
Specifies whether the text extracted is a single string or a list of strings,
where each string in the list corresponds to a single row of text from the
extracted region. Valid values are true and false.
index If an existing global variable is indexed, this attribute specifies the index
number to which the extracted value is to be written. The effect of this
attribute is dependent on the value of the overwrite attribute. If
overwrite=true, the extracted value overwrites the existing variable,
starting at the specified index. If overwrite=false, the extracted value is
inserted into the existing variable, beginning at the specified index.
shared

Shared specifies whether the global variable is shared between all the
applications in the same EAR file.

Appendix A. HATS Toolkit files 139

<set> tag

Defines the action for setting a global variable. The attributes of the <set> tag are:

enabled
Indicates whether this action is enabled for use. The default is true.

name Specifies the name of the global variable being set. This can be an existing
global variable or a new global variable.

shared
Specifies whether the global variable being set is shared between all the
applications in the same EAR file.

type Specifies whether the value of the global variable being set comes from a
fixed constant or a calculated value. Valid values are string and
calculate.

value Specifies the value being assigned to the global variable.

overwrite
Specifies whether the value being set is to overwrite the value of an
existing global variable. Valid values are true and false.

index If the value being set is being written to an existing indexed global
variable, this attribute specifies the index number to which the value being
set is written. The effect of this attribute is dependent on the value of the
overwrite attribute. If overwrite=true, the value being set overwrites the
existing variable, beginning at the specified index. If overwrite=false, the
value being set is inserted into the existing variable, beginning at the
specified index.

opl Specifies whether the first operand of a calculated value is a fixed constant
or the value of an existing global variable. Valid values are a fixed constant
or the name of a global variable.

opl_type
Specifies whether the value of the first operand of a calculated value is set
as a fixed constant or from an existing global variable. Valid values are
string and variable.

opl_index
If the source of the value of the first operand of a calculated value is an
indexed global variable, opl_index specifies the number of the index used
as the value for the calculation.

opl_shared
If the value of opl is a global variable, shared specifies whether this global
variable is shared between all the applications in the same EAR file.

op Specifies the type of operation to occur between the first and second
operands of a calculated value. Valid values are concatenate, + (add), -
(subtract), * (multiply), / (divide), and % (modulo).

op2 Specifies whether the second operand of a calculated value is a fixed
constant or the value of an existing global variable. Valid values are a fixed
constant or the name of a global variable.

op2_type
Specifies whether the value of the second operand of a calculated value is
set as a fixed constant or from an existing global variable. Valid values are
string and variable.

140 1BM Host Access Transformation Services: Web Application Programmer's Guide

op2_index
If the source of the value of the second operand of a calculated value is an
indexed global variable, op2_index specifies the number of the index used
as the value for the calculation.

op2_shared
If the value of op2 is a global variable, shared specifies whether this global
variable is shared between all the applications in the same EAR file.

dec Specifies the number of decimal places to which a calculated value is
rounded. Valid values are 0-999.

<execute> tag

Defines the action for executing business logic. The attributes of the <execute> tag
are:

enabled
Indicates whether this action is enabled for use. The default is true.

class Names the Java class that contains your business logic. The class value is
required.

method
Names the method inside the class that executes the business logic. The
method value is required.

package
Names the package that the Java class resides in on your file system. The
package value is optional.

<show> tag

Defines the action for showing a URL. The <show> tag has the following
attributes:

enabled
Indicates whether this action is enabled for use. The default is true.

template
Specifies the template to be used for this action.

url Identifies the Uniform Resource Locator (URL) of the Web page to show.
This attribute is required.

<forwardtoURL> tag

Defines the action for passing control from a project to a JSP that invokes an
Integration Object. The <forwardtoURL> tag has the following attributes:

enabled
Indicates whether this action is enabled for use. The default is true.

startStateLabel
If forwarding control to a JSP with an Integration Object chain, specifies
the start state label of the first Integration Object in the chain to be
executed.

url Specifies the URL of the Integration Object JSP.

<disconnect> tag

Disconnects the default connection. Use this action carefully and only for events
from which you cannot recover. The <disconnect> tag has the following attribute:

Appendix A. HATS Toolkit files 141

142

enabled
Indicates whether this action is enabled for use. The default is true.

<play> tag
Defines the action for playing a macro. The <play> tag has the following attributes:

enabled
Indicates whether this action is enabled for use. The default is true.

macro Names the macro to be played. This attribute is required.

<perform> tag

Defines the action for playing a macro on any connection, not necessarily the
default connection. This action does not affect the current host screen. The
<perform> tag has the following attributes:

connection
The connection on which the macro is to be played. The default is main.

enabled
Indicates whether this action is enabled for use. The default is true.

macro The name of the macro to be played.

<pause> tag

Defines the action for waiting for some time before continuing with normal
processing. The <pause> tag has the following attributes:

enabled
Indicates whether this action is enabled for use. The default is true.

time Specifies the time, in milliseconds, to pause before continuing with normal
processing.

<sendkey> tag

Defines the action for sending a specified key to the host screen to perform an
action. The <sendkey> tag has the following attributes:

enabled
Indicates whether this action is enabled for use. The default is true.

key Indicates key to send to the host screen.
row Defines the starting row on the host screen where the key is to be inserted.

col Defines the starting column on the host screen where the key is to be
inserted.

<globalRules> tag

The <globalRules> tag is the enclosing tag for any global rules you define for
screen events. It has no attributes.

<rule> tag
The <rule> tag defines a global rule.

The attributes of the <rule> tag for screen customization-level rules are the same as
for project-level global rules. However, when you create a screen

IBM Host Access Transformation Services: Web Application Programmer's Guide

customization-level and a project-level global rule using the same input field, the
screen customization-level rule will have a higher priority. The <rule> tag
attributes are:

associatedScreen
The name of a screen capture in the project, from which the global rule is
defined.

componentSettings
Any settings configured for the global rule, such as recognition criteria.

description
The description entered when the global rule was created.

enabled
Indicates whether this global rule is enabled. Reflects the state of the check
box on the Rendering page of Project Settings.

endCol
The last column of the host screen to which this global rule should be
applied. -1 means the rightmost column of the host screen.

endRow
The last row of the host screen to which this global rule should be applied.
-1 means the bottom row of the host screen.

name The name that will be shown in the list of global rules on the Rendering
page of Project Settings.

startCol
The first column of the host screen to which this global rule should be
applied.

startRow
The first row of the host screen to which this global rule should be
applied.

transformationFragment
The name of the transformation fragment file associated with this global
rule. This file contains the information specifying how to transform the
host component. It will be included in a transformation if the appropriate
input fields are present in the host screen.

type The pattern type component for this global rule, taken from the first page
of the Create Global Rule wizard. The type can be one of the following:

com.ibm.hats.transform.components.InputField By TextPatternComponent
This pattern component recognizes input fields on the host screen
based on text near the fields.

com.ibm.hats.transform.components.AllInputFieldsPatternComponent
This pattern component recognizes all input fields on the host
screen.

com.ibm.hats.transform.components.InputFieldBySizePatternComponent
This pattern component recognizes input fields on the host screen
based on the size of the input fields.

The following tags are also included in each specific global rule:

Appendix A. HATS Toolkit files 143

componentSettings
The <componentSettings> tag is the enclosing tag for any settings defined
for the pattern type component specified on the type attribute of the
<rule> tag. This tag has no attributes.

setting
The <setting> tag is the enclosing tag for any settings defined for the
pattern type component specified on the type attribute of the <rule> tag.

The attributes of the <setting> tag are:

name Specifies the name of a customizable setting for the pattern type
component. The available settings depend on the component.

* For the
com.ibm.hats.transform.components.InputFieldByTextPattern
Component, the settings for the name attribute are:

caseSensitive
Specifies whether the case of the text on the text setting
must match before the pattern is recognized. Valid
values are true and false. The default is true.

immediatelyNextTo
Specifies which input fields you want to transform.Valid
values are:

true Specifies that only the nearest input field should
be transformed.

false Specifies that all input fields should be
transformed.

The default is false.

location
Specifies where text in a protected field, as specified on
the text setting, must be in relation to input fields for
this global rule to be applied. Valid values are:

ABOVE
Specifies that the text must be above the input
field.

BELOW
Specifies that the text must be below the input
field.

LEFT Specifies that the text must be to the left of the
input field.

RIGHT
Specifies that the text must be to the right of the
input field.

The default is RIGHT.

text Specifies some text in a protected field of the host screen.
Valid values are any text in a protected field on the host
screen.
* For the
com.ibm.hats.transform.components. AlllnputFieldsPattern
Component, there are no component settings.

144 1BM Host Access Transformation Services: Web Application Programmer's Guide

* For the com.ibm.hats.transform.components.
InputFieldBySizePattern Component, the setting for the name
attribute is fieldSize.Valid values are the sizes of any input fields
on the host screen.

<associatedScreens> tag
The <associatedScreens> tag encompasses the screen tag that follows.

<screen> tag

Defines a screen associated with the screen customization. The <screen> tag has
the following attribute:

name Specifies the name of a captured screen, for which the screen recognition
criteria and actions have been defined.

<description> tag

The <description> tag is the enclosing tag for the description associated with the
screen customization, which consists of the <oia> tag and the <string> tag. There
are no attributes for the description tag.

<oia> tag

The <oia> tag in the screen customization .evnt file specifies an operator
information area (OIA) condition to match. This tag is optional. The default is to
wait for inhibit status. The attributes of the <oia> tag are:

status If NOTINHIBITED, the OIA must be uninhibited for a match to occur. If
DONTCARE, the OIA inhibit status is ignored. This has the same effect as not
specifying OIA at all. Valid values are NOTINHIBITED and DONTCARE. This
is a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors contain more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false. This attribute is optional. The
default is false.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. This attribute is optional. The default is false.

<string> tag

The <string> tag describes the screen based on a string. The attributes of the
<string> tag are:

value The string value. This value can contain any valid Unicode character. This
is a required attribute.

row The starting row position for a string at an absolute position or in a
rectangle. The value must be a number or an expression that evaluates to a
number. This value is optional. If not specified, Macro logic searches the

Appendix A. HATS Toolkit files 145

entire screen for the string. If specified, col position is required. <erow>
and <ecol> attributes can also be specified to specify a string in a
rectangular area.

Note: Negative values are valid and are used to indicate relative position
for the bottom of the screen (for example, -1 is the last row).

col The starting column position for the string at an absolute position or in a
rectangle. The value must be a number or an expression that evaluates to a
number. This attribute is optional.

erow The ending row position for string in a rectangle. The value must be a
number or an expression that evaluates to a number. This attribute is
optional. If both erow and ecol are specified, string is in a rectangle.

ecol The ending column position for string in a rectangle. The value must be a
number or an expression that evaluates to a number. This attribute is
optional. If both erow and ecol are specified, string is in a rectangle.

casesense
If true, string comparison is case sensitive. The value must be true or
false or an expression that evaluates to true or false. This attribute is
optional. The default is false.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors contain more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false or an expression that evaluates
to true or false. This attribute is optional. The default is false.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false or an expression that evaluates to true or false. This attribute is
optional. The default is false.

<nextEvents> tag
The <nextEvents> tag encompasses the <event> tag that follows. The <nextEvents>
tag has the following attribute:

defaultEvent
Specifies the default screen customization (event) used as the next screen to
occur, if there are no matching screen customizations named on the event
tags. If defaultEvent does not specify an event, the normal event priority
list in the project settings is used. Valid values are:

* unmatchedScreen
* error

» disconnect

* stop

* (no value)

146 1BM Host Access Transformation Services: Web Application Programmer's Guide

<event> tag

Defines another screen customization in the project that is the probable next screen
to occur. The <event> tag has the following attributes:

enabled
Indicates whether the screen customization (event) defined on the name
attribute is enabled for use. The default is true.

name Specifies the name of a screen customization that is the probable next
screen to occur.

<remove> tag

The <remove> tag removes global variables previously added to the screen
customization (event). The <remove> tag has the following attributes:

enabled
Indicates whether the global variable defined on the name attribute is
enabled for removal. The default is true.

name Specifies the name of the global variable to be removed.

remove Type
Specifies the type of the global variable to be removed. Types include
onelocal, oneShared, allL.ocal, allShared, and all.

Macro files (.hma)

Macro files are stored in the project_name/Web Content/WEB-INF/profiles/macros
directory. You can view and edit the source of the macro files by double-clicking
on the name of the macro in the HATS Project View to open the macro editor. The
source for the file can be viewed by clicking on the Source tab. For more
information about macros, see Advanced Macro Guide.

Macro files contain tags that define a set of screens. The tags are described in the
sections that follow.

<macro> tag

Begins the definition of the macro. The macro tag has no attributes.

<associatedConnections> tag

The <associatedConnections> tag encompasses the <connection> tag that follows.
The attribute of the <associatedConnections> tag is:

default
Identifies the default connection for this macro.

<connection> tag

The <connection> tag identifies the connection with which this macro is associated.
The attribute of the connection tag is:

name Identifies the name of the connection with which this macro is associated.

<extracts> tag

The <extracts> tag encompasses the extract tag that follows. The <extracts> tag has
no attributes.

Appendix A. HATS Toolkit files 147

<extract> tag

The <extract> tag defines the extraction to occur. The attributes of the extract tag
are:

name Specifies the name of the extraction.

handler
You can select a .jsp file to display the extracted information to the end
user. A default macro handler is shipped with HATS, and it is named
default.jsp. You can find this file by clicking the HATS Project View tab of
the HATS Toolkit and expanding the project name, and then expanding
Macros > Macro Event Handlers. If you want to create your own handler,
ensure that you return control to the HATS runtime.

showHandler
Specifies whether the extracted information should be shown to the end
user. Valid values are true and false.

shared
Specifies whether a global variable being extracted is shared between all
the applications in the same EAR file.

save Specifies whether the extracted information is saved to a global variable.
Valid values are true and false.

variableName
If the extracted information is being saved to a global variable,
variableName specifies the name of a new or existing global variable.

overwrite
If the extracted information is being saved to an existing global variable,
overwrite specifies whether the extracted information is to overwrite the
current value of the existing global variable, or whether the extracted
information is to be appended to the current value. Valid values are true
and false. True specifies that the value of the existing global variable is
overwritten.

index If the value being extracted is being written to an existing indexed global
variable, this attribute specifies the index number to which the value being
set is written. The effect of this attribute is dependent on the value of the
overwrite attribute. If overwrite=true, the value being extracted overwrites
the existing variable, beginning at the specified index. If overwrite=false,
the value being extracted is inserted into the existing variable, beginning at
the specified index.

indexed
Specifies whether the extracted information is a single string or a list of
strings. Valid values are true and false. True specifies that the extracted
information is a list of strings.

isBidi Specifies whether the connection used in recording the macro is
bidirectional. Valid values are true and false.

isRtlScreen
Specifies whether the bidirectional screen is right-to-left. Valid values are
true and false.

screenorientation
Specifies the orientation of the extract action. Valid values are Ttr and rtl.

148 1BM Host Access Transformation Services: Web Application Programmer's Guide

<prompts> tag

The <prompts> tag encompasses the prompt tag that follows. The prompts tag has
no attributes.

<prompt> tag

The <prompt> tag defines the prompt to occur. The attributes of the <prompt> tag
are:

name Specifies the name of the prompt.

handler
You can select a .jsp file to prompt the end user for the necessary
information, and include a button for the user to submit the information. A
default macro handler is shipped with HATS, and it is named default.jsp.
You can find this file by clicking the HATS Project View tab of the HATS
Toolkit and expanding the project name, and expanding Macros > Macro
Event Handlers. If you want to create your own handler, ensure that you
return control to the HATS runtime.

source Specifies whether the value of the prompt is set to a string or the value of
a global variable. Valid values are string and variable.

variableName
If the value of the prompt is being saved to a global variable,
variableName specifies the name of a new or existing global variable.

variableIndex
If the value of the prompt is being saved to an indexed global variable,
variableIndex specifies to which index the value should be assigned. This
value is always 0.

variableIndexed
Specifies whether the information for the prompt is coming from an
indexed global variable. Valid values are true and false. True specifies
that the global variable is indexed.

value Specifies either the string to be used for the prompt or the name of a
global variable from which the value is taken.

welApplID
Specifies the application ID to use with the WEL logon macro.

wellsPassword
Specifies whether this is a password field to use with the WEL logon
macro.

LTRImpicitOrient
Specifies whether the implicit bidirectional screen orientation is
left-to-right. Valid values are true and false.

isBidi Specifies whether the connection used in recording the macro is
bidirectional. Valid values are true and false.

isRtlField
Specifies whether the bidirectional field is right-to-left. Valid values are
true and false.

isRtlScreen
Specifies whether the bidirectional screen is right-to-left. Valid values are
true and false.

Appendix A. HATS Toolkit files 149

screenorientation
Specifies the orientation of the prompt action. Valid values are 1tr and rtl.

<HAScript> tag

The <HAScript> tag is the main enclosing tag for the other macro tags and
attributes. See the |[HATS Advanced Macro Guidel for more information about macro
tags.

Screen capture files (.hsc)

Screen capture files are XML representations of host screens, used to create or
customize screen customizations, screen combinations, transformations, global
rules, or macros.

Screen capture files are stored in the project_name/Screen Captures directory. You
can view these files by double-clicking on the name of the screen capture in the
HATS Project View. You cannot edit screen capture files.

Note: Screen captures of video terminal (VT) host screens can be used to create or
customize a macro using the Visual Macro Editor and as the check-in screen
when configuring pooling. They cannot be used to create screen
customizations, screen combinations, transformations, default rendering, or
global rules.

BMS Map files

(.bms and .bmc)

Basic Mapping Support (BMS) maps are screen definitions files for Customer
Information Control System (CICS®). Each map defines all or part of a screen, and
a CICS application typically displays one or more maps to create a complete screen
image. The source for BMS maps is organized in groups called map sets. One map
set contains one or more maps. Map sets exist in source form as one map set per
source file.

BMS map set files can be imported into a project in HATS Toolkit. When HATS
imports BMS maps, the import takes place at the map set level. It is not possible to
import an individual map. Imported BMS map set files have a file extension of
Jbms, and the individual maps have a file extension of .bmc in HATS Toolkit.

Both the map set files (.bms) and the map files (.bmc) are stored in a separate
Maps folder within the HATS project. By default, the Maps folder is not visible in
the HATS Project View until there are maps imported.

HATS enables you to generate screen captures from map files. You can choose to
generate the screen captures when you import map sets, or you can generate them
from the maps after they are in the Maps folder. To generate screen captures from
maps, right click on a map file to display the pop-up menu and select Generate
Screen Captures. You can elect to create separate screen captures for each BMS
map selected or merge selected BMS maps into a single screen capture. Maps
cannot be merged if fields overlap. Once the screen captures are created, you can
begin creating HATS screen customizations.

You can open a map set file in a HATS Toolkit editor by double-clicking on the file
in the HATS Project View. See the CICS Application Programming Reference for
information about the contents of the file. When a map set file is modified and
saved in the text editor, the maps that make up the file are regenerated, with one

150 IBM Host Access Transformation Services: Web Application Programmer's Guide

mr_reference_to_elements.htm#mr_hascript

exception: map files in which the contents of fields defined with labels in the map
set files have been modified. To regenerate those maps, you must import the
source file again using the BMS map set import wizard.

When a CICS application runs, it can modify the contents of the fields defined
with labels. You might need to create screen captures with the fields appearing as
they will be when the CICS application runs. Since the labeled fields are
changeable when the application runs, the map set file (and the map files that are
in the map set) may not contain all the information needed to generate an actual
screen capture. While you cannot edit map files, double-clicking on a file opens a
file preview. The property sheet view in HATS Toolkit enables you to add missing
information and manually set the contents of the fields. By modifying the contents
of the fields, a single map can be used for multiple screen captures.

Notes:

1. When you are previewing a map file in HATS Toolkit, the fields displayed in
the property sheet view are the fields for the map file highlighted in the HATS
Project View, not the map file you see in the preview window.

2. You can also screen capture files using the property sheet view in HATS
Toolkit, as long as the screen capture files were generated from BMS map files.

Image files (.gif, .jpg, or .png)

Image files are used in HATS Toolkit within template files to create the Web page
displayed to the user of your project.

Image files are stored in the project_name/Web Content/common/images directory.
You can view the image files by double-clicking on the name of the image.

Stylesheet files (.css)

Cascading Style Sheets (or style sheets) are used in HATS Toolkit within template
files to specify appearance items such as colors, fonts, borders, whitespace, images,
margins, and spacing between lines.

The stylesheet files provided by HATS can be grouped into categories.

Unique templates
Some HATS templates use individualized style sheets. The following style
sheets are used by the Finance, Industry, Medical, Research, and Transport
templates, respectively.

* finance.css

* industry.css

* medical.css

* research.css

* transport.css

In addition, you can use these style sheets in combination with the “Font”
and “Unique” style sheets listed below. For example, you can use a font
style sheet to override the default defined fonts. You should not use the

“Main” or “Reverse video” style sheets listed below in combination with
these unique template style sheets.

Main Some HATS templates use a combination of general purpose style sheets.
These general purpose main style sheets determine the overall appearance
of the template and other controls that you might add to a project.

Appendix A. HATS Toolkit files 151

Examples of these controls include buttons, input fields, tables, fields, and
links. These style sheets are named with theme at the end, such as
blacktheme, whitetheme, monochrometheme, and tantheme. The
appearance of the controls in a project is determined by classes named in
the style sheets, for example, HATSCHECKBOX, HATSRADIOBUTTON,
and HATSDROPDOWN.

Reverse video
Templates that use a general purpose main style sheet, also use a general
purpose secondary style sheet that determines the color scheme of any
reverse video items in a project. These reverse video style sheets are named
with reverseVideo at the beginning, such as reverseVideoGray,
reverseVideoTan, reverseVideoBlack, and reverseVideoWhite. Some of the
classes named in the style sheets are RHBLUE, RHGREEN, and
RHMAGENTA.

Font Some of the style sheets provided by HATS are not named in the templates
by default. However, you can apply these style sheets to the templates to
change the font family (Arial, Tahoma) or font size of the text. The names
of the style sheets give you an idea of their purpose:

* normalFont.css
* scaleableFont.css
* nonFixedFont.css
* largeFont.css

* smallFont.css

* xlargeFont.css

* xsmallFont.css

Unique
Three additional style sheets provided by HATS each have their own
unique purpose. These are:

calendar.css
This style sheet controls the appearance of the calendar widget
date picker when launched in a new browser window. This style
sheet has no effect when the date picker is launched in the current
Web page using the Use inline calendar setting on the Calendar
widget.

inlinecalendar.css
This style sheet controls parts of the appearance of the calendar
widget date picker when launched in the current Web page. To
display the calendar in the same page, select the Use inline
calendar setting on the Calendar widget. This style sheet has no
effect when the date picker is launched in a new browser window,
that is, when not using the Use inline calendar setting.

PrintJobWindow.css
This style sheet controls the appearance of a print job in a project,
including the PrintfJobHeading, ListHeader, and ListEntry.

Stylesheet files are stored in the project_name/Web Content/common/stylesheets
directory. You can edit the stylesheet files by double-clicking on the name of the
style sheet in the HATS Project View to open the stylesheet editor.

For more information on editing cascading style sheets, see “{Using style sheets|’ in
the HATS User’s and Administrator’s Guide.

152 IBM Host Access Transformation Services: Web Application Programmer's Guide

ugtmplat.htm#stylesh

Spreadsheet files (.csv or .xls)

Spreadsheet files in either .csv (comma separated values) or .xls (Microsoft Excel)
format can be automatically generated from host screen data defined within the
TableWidget. The spreadsheet files are created by the HATS
SpreadsheetGeneratorServlet and can be displayed at runtime when the user clicks
a defined button or link. A dialog popup displays, and the user can type the
directory and file name where the spreadsheet files are to be stored.

For information about creating spreadsheet files, see the Table widget in the
[User’s and Administrator’s Guidel

Host simulation trace files (.hhs)

Host simulation trace files can be saved and then used to run HATS in a simulated
host connection environment instead of using a live host connection. Simulations
are created by the Host Simulator Recorder, which acts as a proxy between the real
host and the HATS terminal. The host simulation trace files are created in XML
format with a file extension of .hhs and are stored in the following directories in
the Host Simulations folder, which is accessed from the HATS Projects view:

* Web projects - Project_name/Web Content/WEB-INF/profiles /hostsimulations
* EJB projects - Project_name/ejpModule/hostsimulations

For information about creating host simulation trace files, see the [HATS User’s and)
[Administrator’s Guide|

ComponentWidget.xml

The ComponentWidget.xml file contains the definitions of all the host components
and widgets provided with HATS. If you add your own host components or
widgets, you will need to update this file. For an explanation and a small sample
of the file, see ["Registering your component or widget” on page 25| The
ComponentWidget.xml file appears as the last item in your project in the
Navigator view. To edit the file, double-click the file name in the Navigator view
and select the Source tab.

For a description of the contents and use of this file, see [“Registering your]
fcomponent or widget” on page 25,

Web Express Logon configuration file (hatswelcfg.xml)

Web Express Logon (WEL) credential mapping is configured in an XML file named
hatswelcfg.xml, which is stored in the root directory of the EAR project for HATS
servlet projects. To view the source of the WEL configuration, open the WEL editor
from the Security tab of the Connection Editor, then click on the Source tab.
However, you should modify the configuration using the Network Security
Plug-in and Credential Mapper Plug-ins tabs of the WEL editor.

<credentialmapper> tag

The <credentialmapper> tag is the enclosing tag for the Web Express Logon
configuration. The attribute of the <credentialmapper> tag is:

class Specifies the Java class to use as the WEL Credential Mapper. This value is
not editable on the two plug-in tabs of the WEL Editor. Do not change this
value unless directed to do so by IBM Service.

Appendix A. HATS Toolkit files 153

ugcwset.htm#tablew
ugcwset.htm#tablew
ughostsm.htm
ughostsm.htm

<networksecurity> tag

The <networksecurity> tag is a container for zero or one Network Security plug-in
tag (<plugin>), and has no attributes.

<cmplugins> tag

The <cmplugins> tag is a container for a number of Credential Mapper plug-in
tags (<plugin>), and has no attributes.

<plugin> tag
The <plugin> tag identifies either a Network Security plug-in or a Credential

Mapper plug-in, and encloses the tags for the plug-in's parameters. The attributes
of the <plugin> tag are:

class Specifies the Java class that contains the plug-in code.

authenticationtype
Specifies the types of hosts for which the plug-in can map credentials, and
is used by Web Express Logon to determine which plug-in will handle a
request. Valid values are AuthType_A11, AuthType_3270Host,
AuthType_5250Host, and AuthType VTHost. Multiple values can be used,
separated by vertical bar (I). This attribute is valid only for a Credential
Mapper plug-in, when the <plugin> tag is enclosed by the <cmplugins>
tag.

hostmask
Specifies the names of hosts for which the plug-in can map credentials,
and is used by Web Express Logon to determine which plug-in will handle
a request. The value of this attribute can contain one or more host
addresses, with the vertical bar (1) to join multiple addresses, and the
asterisk (*) as a wildcard at the beginning, end, or both, of a host address.
This attribute is valid only for a Credential Mapper plug-in, when the
<plugin> tag is enclosed by the <cmplugins> tag.

<param> tag

The <param> tag identifies a plug-in parameter's name and value. The attributes of
the <param> tag are:

name Specifies the name of the plug-in parameter. Each plug-in Java class defines
the set of parameter names it will accept.

value Specifies the value of the plug-in parameter. If the parameter is defined in
the plug-in Java class to be an encrypted parameter, the value here must be
encrypted.

154 IBM Host Access Transformation Services: Web Application Programmer's Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information might include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements or
changes in the product(s) and the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2018 155

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation

5 Technology Park Drive

Westford, MA 01886

US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information

This Web Application Programmer's Guide contains information on intended
programming interfaces that allow the customer to write programs to obtain the
services of HATS.

156 IBM Host Access Transformation Services: Web Application Programmer's Guide

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at ’
[trademark information|” at www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

JAvA

Appendix B. Notices 157

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

158 IBM Host Access Transformation Services: Web Application Programmer's Guide

Glossary

action. A defined task that an application performs on a managed object as a result of an event, such as a host
screen matching the screen recognition criteria specified for a screen event. A list of actions is part of the definition of
each event.

ADB. See application data buffer.

administrative console. The HATS administrative console is a Web-based utility that provides views and functions
to manage licenses and connections, set log and trace settings, view messages and traces, and perform problem
determination for HATS Web applications.

application. See HATS application.

application data buffer. The format of data that is returned by the WebFacing Server for consumption by the
WebFacing application.

application event. A HATS event that is triggered by state changes in the application's life cycle. Examples of
application events include a user first accessing a HATS application (a Start event), or an application encountering an
unrecognized screen (an Unmatched Screen event).

application keypad. A set of buttons or links representing HATS application-level functions. (Contrast with host
keypad.)

artifact. See resource

background connection. Any connection defined in a HATS application other than the default connection. HATS
does not transform screens from background connections. (Contrast with default connection.)

bidirectional (bidi). Pertaining to scripts such as Arabic and Hebrew that generally run from right to left, except for
numbers, which run from left to right.

BMS map. A screen definition file used with Basic Mapping Support in CICS. A BMS map defines a set of fields
which are to be displayed as a group by a CICS application

business logic. Java code that performs advanced functions, such as interacting with other applications, databases,
or other systems accessible via Java APIs. Business logic is invoked as an action in an application or screen event.

checkin screen. The screen identifying the host screen that should be active for a connection to be considered ready
to be returned to the connection pool. If the application is not on the screen specified by the checkin screen, the
connection will be discarded or recycled in attempt to return the connection to the host screen specified by the
checkin screen. The checkin screen is only meaningful if connection pooling is specified for a connection.

component. A visual element of a host screen, such as a command line, function key, or selection list. HATS
applications transform host components into widgets.

connection. A set of parameters used by HATS, stored in an .hco file, to connect to a host application. (See also
default connection and background connection.)

connection pool. A group of host connections that are maintained in an initialized state, ready to be used without
having to create and initialize them.

credential mapper. The component of Web Express Logon that handles requests for host credentials, which have
been previously authenticated by a network security layer. (See network security layer.)

DDS map. Data Description Specification map. These maps define the layout and behavior of the presentation space
for IBM i terminal applications.

Debug. For rich client projects, the same as Run, and in addition enables you to:
* Use the display terminal to see host screens as they are navigated while testing your project

* See debug messages in the Rational SDP console

© Copyright IBM Corp. 2003, 2018 159

* See changes you make to your project, for example changing the template or a transformation, without having to
restart your application

* Modify and test runtime settings, defined in the runtime-debug.properties file, without modifying the settings,
defined in the runtime.properties file, that are deployed to the runtime environment

* Step through Java code, such as HATS business logic

Debug on Server. For Web projects, the same as Run on Server, and in addition enables you to:
* Use the display terminal to see host screens as they are navigated while testing your project
* See debug messages in the Rational SDP console

* See changes you make to your project, for example changing the template or a transformation, without having to
restart your application on the test server

* Modify and test runtime settings, defined in the runtime-debug.properties file, without modifying the settings,
defined in the runtime.properties file, that are deployed to the runtime environment

* Step through Java code, such as HATS business logic

default connection. The connection on which HATS transforms and presents host application screens to the user.
Also referred to as transformation connection. (Contrast with background connection.)

default rendering. The method used by HATS to render parts of the host screen for which no specific
transformation is specified.

deploy. To make a HATS application ready for use in a runtime environment. For HATS Web applications, this
includes exporting the HATS project as a Java EE application, that is, as an .ear file, and installing it on WebSphere
Application Server. For HATS rich client applications, this includes exporting the HATS project as an Eclipse feature
and installing it on individual client systems, either as a stand-alone Eclipse application or from an update site to an
existing Eclipse runtime environment.

descriptor. See screen recognition criteria.

developer. The person who uses HATS Toolkit to develop applications; also application developer or Web
developer. (Contrast with user.)

Device Runtime Environment (DRE). A package containing other runtime environments, including the J2SE
runtime, which is required to run HATS rich client applications in Lotus Expeditor Client V6.2.0 and earlier. The DRE
installs into the runtime environment for Lotus Expeditor Client.

display terminal. A terminal window that displays host screens you can use while testing and debugging to
observe interactions between a HATS application and a host application at runtime. You can also interact with the
host application using host screens in the terminal window.

Eclipse. An open-source initiative that provides ISVs and other tool developers with a standard platform for
developing plug-compatible application development tools. Eclipse is available for download from
http:/ /www.eclipse.org.

editor. An application that enables a user to modify existing data. In HATS Toolkit, editors are used to customize
resources that have been created by wizards.

Enhanced Non-Programmable Terminal User Interface (ENPTUI). Enables an enhanced interface on
non-programmable terminals (NPT) and programmable work stations (PWS) over the 5250 full-screen menu-driven
interface, taking advantage of 5250 display data stream extensions.

enterprise archive (EAR). A specialized Java archive (JAR) file, defined by the Java EE standard used to deploy Java
EE applications to Java EE application servers. An EAR file contains enterprise beans, a deployment descriptor, and
Web archive (WAR) files for individual Web applications. (Sun)

Enterprise JavaBeans (EJB). A component architecture defined by Oracle for the development and deployment of
object-oriented, distributed, enterprise-level applications. (Oracle)

event. A HATS resource that performs a set of actions based on a certain state being reached. There are two types of
HATS events, application events and screen events.

160 IBM Host Access Transformation Services: Web Application Programmer's Guide

export. To collect the resources of a HATS project, along with the necessary executable code, into an application
EAR file (for Web applications) or Eclipse feature (for rich client applications) in preparation for deploying the
application.

Extensible Markup Language (XML). A standard metalanguage for defining markup languages that was derived
from and is a subset of SGML.

GB18030. GB18030 is a new Chinese character encoding standard. GB18030 has 1.6 million valid byte sequences and
encodes characters in sequences of one, two, or four bytes.

global rule. A rule defining how the rendering of specific input fields should be modified based on certain criteria.
Global rules are used in customized screens and screens rendered using default rendering. Global rules can be
defined at the project level or at the screen event level.

global variable. A variable used to contain information for the use of actions. The values of global variables can be
extracted from a host screen or elsewhere, and can be used in templates, transformations, macros, Integration Objects,
or business logic. A global variable can be a single value or an array, and it can be shared with other HATS
applications sharing the same browser session.

HATS. See Host Access Transformation Services.

HATS application. An application that presents a version of a host application to users, either as a Web-enabled
application deployed to WebSphere Application Server, a portlet deployed to a WebSphere Portal, or as an Eclipse
client-side processing plug-in deployed to an Eclipse rich client platform such as Lotus Notes or Lotus Expeditor
Client. A HATS application is created in HATS Toolkit from a HATS project and deployed to the applicable
environment. The deployed application might interact with other host or e-business applications to present combined
information to a user.

HATS EJB project. A project that contains the HATS EJB and Integration Objects that other applications can use to
get host data. A HATS EJB project does not present transformed screens from a host application.

HATS entry servlet. The servlet that is processed when a user starts a HATS Web application in a browser.

HATS project. A collection of HATS resources (also called artifacts), created using HATS Toolkit wizards and
customized using HATS Toolkit editors, which can be exported to a HATS application.

HATS Toolkit. The component of HATS that runs on Rational SDP and enables you to work with HATS projects to
create HATS applications.

Host Access Transformation Services (HATS). An IBM software set of tools which provides Web-based access to
host-based applications and data sources.

host component. See component.

host keypad. A set of buttons or links representing functions typically available from a host keyboard, such as
function keys or the Enter key. (Contrast with application keypad.)

host simulation. Host simulation enables you to record host simulation trace files that can be saved and then used
instead of a live host connection. The recorded trace files can be played back to create screen captures, screen events,
and screen transformations using the host terminal function, create and test macros using the host terminal function,
test HATS applications using the Rational SDP local test environment, and, along with other traces and logs, aid in
troubleshooting a failing scenario in a runtime environment.

host simulation trace. Host simulation trace files record host screens and transactions that can be saved and played
back later instead of using a live host connection. Trace files can be recorded using the host terminal function or
while in the runtime environment.

host terminal. A HATS Toolkit tool. A session tied to a particular HATS connection, which the HATS developer can
use to capture screens, create screen customizations, and record macros.

HTML. Hypertext Markup Language.

HTML widget. See widget

Glossary 161

Integration Object. A Java bean that encapsulates an interaction with a host screen or a series of host screens.
Integration Objects are constructed from macros and can be included in traditional (WSDL-based) Web services,
RESTful Web services, or HATS EJB projects. Integration Objects cannot be used in rich client platform applications.

interoperability. The ability of a computer or program to work with other computers or programs.

interoperability runtime. Common runtime used by a combined HATS/WebFacing application to provide
management of common connection to the backend host. This runtime decides whether data being returned by the
WebFacing server should be handled by the HATS or WebFacing part of the application.

Java Platform, Enterprise Edition (Java EE). An environment for developing and deploying enterprise applications,
defined by Oracle. The Java EE platform consists of a set of services, application programming interfaces (APIs), and
protocols that provide the functionality for developing multitiered, Web-based applications. (Oracle)

JavaServer Faces (JSF). A framework for building Web-based user interfaces in Java. Web developers can build
applications by placing reusable UI components on a page, connecting the components to an application data source,
and wiring client events to server event handlers. (Oracle)

JavaServer Pages (JSP). A server-side scripting technology that enables Java code to be dynamically embedded
within Web pages (HTML files) and run when the page is served, returning dynamic content to a client. (Oracle)

JavaServer Pages Standard Tag Library (JSTL). A standard tag library that provides support for common, structural
tasks, such as: iteration and conditionals, processing XML documents, internationalization, and database access using
the Structured Query Language (SQL). (Oracle)

JSE. See JavaServer Faces.
JSP. See JavaServer Pages.

JSR 168. The Java Portlet Specification addresses the requirements of aggregation, personalization, presentation, and
security for portlets running in a portal environment. Version 1.0 of the Java Portlet Specification, Java Specification
Request 168 (JSR 168), defines standards to enable portlet compatibility between portal servers offered by different
vendors. See JSR 286.

JSR 286. The Java Portlet Specification addresses the requirements of aggregation, personalization, presentation, and
security for portlets running in a portal environment. Version 2.0 of the Java Portlet Specification, Java Specification
Request 286 (JSR 286), defines standards to extend the capabilities of Version 1.0 (JSR 168) to include coordination
between portlets, resource serving, and other advanced features. See JSR 186.

JSTL. See JavaServer Pages Standard Tag Library.

keyboard support. The ability for a developer to enable a user to use a physical keyboard to interact with the host
when the application is running in a Web browser or rich client environment. The developer also decides whether to
include a host keypad, an application keypad, or both, in a project. If keypads are included, the developer decides
which keys are included and how those keys and the keypad appear in the client interface.

keypad support. The ability for a developer to enable a user to interact with the host as if the physical keys on a
keyboard were pressed, or to perform tasks related to the application, such as viewing their print jobs or refreshing
the screen. See also application keypad and host keypad.

linked HATS/WebFacing project. A project created by linking a single HATS Web project with a single WebFacing
project for the purpose of creating an enterprise application that includes a HATS Web application interoperating
with a WebFacing application and sharing a connection to a 5250 backend host.

Lotus Expeditor Client. A standalone client of the Lotus Expeditor product. It is installed on a user or development
machine.

Lotus Notes Client. A standalone client of the Lotus Notes product. It is installed on a user or development
machine.

macro. A macro, stored in a .hma file, automates interactions with the host. It can send commands to the host, enter
data into entry fields, extract data from the host, and be used to navigate screens on behalf of the user.

162 IBM Host Access Transformation Services: Web Application Programmer's Guide

Model 1 Web pages. A single JSP that contains the information to be presented to the user, formatting tags that
specify how the information is displayed, and logic that controls the order in which pages are displayed. (Contrast
with Struts Web pages.)

network security layer. Software that is responsible for authenticating users and authorizing them to access network
resources, such as IBM Tivoli Access Manager.

Operator Information Area (OIA). OIA is the area at the bottom of the host session screen where session indicators
and messages appear. Session indicators show information about the workstation, host system, and connectivity.

perspective. In the Rational SDP workbench, a group of views that show various aspects of the resources in the
workbench. The HATS perspective is a collection of views and editors that allow a developer to create, edit, view,
and run resources which belong to HATS applications.

pooling. See connection pool.

portal. An integrated Web site that dynamically produces a customized list of Web resources, such as links, content,
or services, available to a specific user, based on the access permissions for the particular user.

print support. The ability for a developer to specify a printer session to be associated with a host session, and
enable the user to view host application print jobs, send them to a printer, or save them to disk. Print support is
available only for the default connection

Profile. For rich client projects, the same as Run, and in addition enables you to locate the operations that require
the most time, and identify actions that are repeated, to eliminate redundancy. You can use this function for
performance analysis, helping you to get a better understanding of your application.

Profile on Server. For Web projects, the same as Run on Server, and in addition enables you to locate the operations
that require the most time, and identify actions that are repeated, to eliminate redundancy. You can use this function
for performance analysis, helping you to get a better understanding of your application.

project. A collection of HATS resources (also called artifacts) that are created using HATS Toolkit wizards and
customized using HATS Toolkit editors. These resources are exported as a HATS application. Types of HATS projects
include Web, portlet, EJB, rich client, and for purposes of administering HATS Web (including portlet and EJB)
applications, HATS administrative console projects. See HATS project or HATS EJB project.

Rational Software Delivery Platform (Rational SDP). A family of IBM software products that are based on the
Eclipse open-source platform and provide a consistent set of tools for developing e-business applications.

rendering set. A rendering set is configured by creating a prioritized list of rendering items. Each rendering item
defines a specific region in which a specified host component is recognized and then rendered using a specified
widget.

resource. Any of several data structures included in a HATS project. HATS resources include templates, screen
events, transformations, screen captures, connections, and macros. Other Rational SDP plug-ins sometimes call these
"artifacts.”

RESTful Web service. See Web service, RESTful.

rich client. A plug-in designed to run on the Eclipse Rich Client Platform in a client environment, and designed to
provide an enhanced user experience by the appearance and behavior native to the platform on which it is deployed.

Run. For rich client projects, a function in Rational SDP that enables you to test your HATS rich client projects in an
Eclipse, Lotus Notes, or Lotus Expeditor Client instance. In this mode you can modify and test the runtime settings,
defined in the runtime.properties file, that are deployed to the runtime environment. Be aware that any changes
made to the runtime settings while testing in this mode are retained and become effective when you deploy the
HATS application to a runtime environment.

Run on Server. For Web projects, a function in Rational SDP that enables you to test your HATS Web and portlet
projects in a WebSphere Application Server as appropriate. In this mode you can modify and test the runtime
settings, defined in the runtime.properties file, that are deployed to the runtime environment. Be aware that any
changes made to the runtime settings while testing in this mode are retained and become effective when you deploy
the HATS application to a runtime environment.

Glossary 163

runtime settings. Log, trace, and problem determination settings defined in the runtime.properties file that are
deployed to the runtime environment.

screen capture. An XML representation of a host screen, stored in a .hsc file, used to create or customize a screen
customization, screen combination, transformation, global rule, or macro. Screen captures are useful because they
enable you to develop a HATS project even when not connected to the host. They are also useful in creating macros
which are the core of HATS Integration Object and Web services support.

Screen captures of video terminal (VT) host screens can be used to create or customize a macro using the Visual
Macro Editor and as the check-in screen when configuring pooling. They cannot be used to create screen
customizations, screen combinations, transformations, default rendering, or global rules.

screen combination. A type of HATS screen event designed to gather output data from consecutive, similar host
screens, combine it, and display it in a single output page. The screen combination definition, stored in a .evnt file,
includes a set of screen recognition criteria for both the beginning and ending screens to be combined, how to
navigate from screen to screen, and the component and widget to use to recognize and render the data gathered from
each screen.

screen customization. A type of screen event designed to perform a set of actions when a host screen is recognized.
A screen customization definition, stored in a .evnt file, includes a set of criteria for matching host screens, and
actions to be taken when a host screen matches these criteria.

screen event. A HATS event that is triggered when a host screen is recognized by matching specific screen
recognition criteria. There are two types of screen events, screen customizations and screen combinations.

screen recognition criteria. A set of criteria that HATS uses to match one or more screens. When a host displays a
screen, HATS searches to determine whether the current host screen matches any of the screen recognition criteria
defined for any screen event in your project. If HATS finds a match, the defined actions for the screen event are
performed.

Screen recognition criteria are also used in the process of recording a macro; in this context they are sometimes called
descriptors.

Secure Sockets Layer (SSL). A security protocol that provides communication privacy. SSL enables client/server
applications to communicate in a way that is designed to prevent eavesdropping, tampering, and message forgery.
SSL was developed by Netscape Communications Corp. and RSA Data Security, Inc.

source. The files containing the markup language that define a HATS project or one of its resources. Also the name
of a folder contained in each HATS project.

SSL. See Secure Sockets Layer.

standard portlets. Portlets that comply with the standard portlet APIs defined by Java Portlet Specifications JSR 168
or JSR 286. See JSR 168 and JSR 286. .

Standard Widget Toolkit (SWT). An Eclipse toolkit for Java developers that defines a common, portable, user
interface API that uses the native widgets of the underlying operating system.

Struts Web pages. Web pages built using the Apache Software Foundation’s Struts open-source framework for
creating Java web applications. This method of building Web pages creates class files that set values and contain
getters and setters, input and output JSPs, and a Web diagram to display the flow and logic of the Web pages.
(Contrast with Model 1 Web pages.)

SWT. See Standard Widget Toolkit.

system screen. An IBM i screen for which data description specification (DDS) display file source members are not
available. System screen is specific to an application on an IBM i platform that has been WebFaced.

template. A template, stored in a .jsp file (for Web projects) or a .java file (for rich client projects), controls the basic
layout and style, such as color and font, of the application. It also defines the appearance of areas that are common in
your GUI, such as a banner and a navigation area.

text replacement. A HATS function used to transform text on a host system into images, HTML code, or other text
on a HATS screen transformation,

164 1BM Host Access Transformation Services: Web Application Programmer's Guide

theme. A theme groups a set of common appearance and behavior characteristics for a project. These attributes can
be individually modified later.

transfer. To copy an application EAR file to the server, typically by FTP.

transformation. A transformation stored in a .jsp file (for Web projects) or a .java file (for rich client projects) defines
how host components should be extracted and displayed using widgets in your GUIL

transformation connection. See default connection.

transformation fragment. A HATS resource that contains the content with which to replace all occurrences of a
pattern in any given transformation.

Unicode. A universal character encoding standard that supports the interchange, processing, and display of text that
is written in any of the languages of the modern world. It also supports many classical and historical texts in a
number of languages. The Unicode standard has a 16-bit international character set defined by ISO 10646.

user. Any person, organization, process, device, program, protocol, or system that uses the services of a computing
system.

user list. A list containing information about accounts (user IDs) that a HATS application can use to access a host or
database. User lists contain user IDs, passwords, and descriptions for the accounts.

UTF-8. Unicode Transformation Format, 8-bit encoding form, which is designed for ease of use with existing
ASClII-based systems.

Web archive (WAR). A compressed file format, defined by the Java EE standard, for storing all the resources
required to install and run a Web application in a single file.

Web Express Logon (WEL). A HATS feature that enables users to log onto several hosts using a set of credentials
that are authenticated by a network security layer. (See network security layer.)

Web service. A self-contained, self-describing modular application that can be published and invoked over a
network using standard network protocols.

Web service, RESTful. A Web service that uses a stateless architecture and is viewed as a resource rather than a
function call. Well-formatted URIs are used to identify the Web service resource, HTTP method protocols are used to
do create, retrieve, update, and delete (CRUD) activities, and HTTP header information is used to define the message
format.

Web service, traditional, WSDL-based. A Web service where typically, XML is used to tag data, SOAP is used to
transfer data, WSDL is used for describing the services available, and UDDI is used for listing what services are
available.

WebFacing feature. The IBM WebFacing Tool for IBM i feature of the HATS Toolkit. The WebFacing feature
provides the ability to convert IBM i data description specification (DDS) display file source members into a
Web-based user interface for existing 5250 programs.

WebFaced application. A Web application produced by the WebFacing feature of the HATS Toolkit.

WebSphere. An IBM brand name that encompasses tools for developing e-business applications and middleware for
running Web applications. Sometimes used as a short name for WebSphere Application Server, which represents the
runtime half of the WebSphere family of products.

WebSphere Application Server. Web application server software that runs on a Web server and that can be used to
deploy, integrate, run, and manage e-business applications. HATS applications, when exported and transferred to a
server, run as WebSphere Application Server applications.

WEL. See Web Express Logon.

widget. A reusable user interface component such as a button, scrollbar, control area, or text edit area, that can
receive input from the keyboard or mouse and can communicate with an application or with another widget. HATS
applications transform host components into widgets.

wizard. An active form of help that guides users through each step of a particular task.

Glossary 165

workbench. The user interface and integrated development environment (IDE) in Eclipse-based products such as
Rational SDP.

XML. See Extensible Markup Language.

Various Java definitions reprinted with permission from Oracle.

166 IBM Host Access Transformation Services: Web Application Programmer's Guide

Index

Special characters

>HATS:Component> tag
example 17

<HATS:Component> tag
attributes 17
operations 18

<rule> tag 122, 142

A

actions tag 138
adding business logic 3
alternate rendering support
settings 117
Apache Axis runtime
Web service client 68
API documentation 2
AppletSettings
settings 109
application (-hap) file 107
application tag 107, 108
ApplicationKeypadTag
settings 110
apply tag 138
applyGlobalRules attribute
apply tag 138
applyTextReplacement attribute
apply tag 138
associatedConnections tag 147
associatedScreen
screenCombination 138
associatedScreen attribute 137
renderingltem tag 119
rule tag 122, 143
associatedScreens tag 145
attribute
associatedScreen 137
column 137
row 137
type 136
attributes
applyGlobalRules
apply tag 138
applyTextReplacement
apply tag 138
associatedScreen
renderingltem tag 119
rule tag 122, 143
autoEraseFields
RuntimeSettings 115
casesense
string tag 146
caseSensitive
replace tag 118, 121
certificateFile
hodconnection tag 124
class
execute tag 141
code page
hodconnection tag 124

© Copyright IBM Corp. 2003, 2018

attributes (continued)

codePageKey
hodconnection tag 124
col
insert tag 139
sendkey tag 142
string tag 146
componentSettings
rule tag 143
connection
perform tag 142
connecttimeout
hodconnection tag 127
dec
set tag 141
default
associatedConnections tag 147
defaultRendering tag 119
defaultEvent
nextEvents tag 146
description
application tag 107
event tag 138
hodconnection tag 127
renderingltem tag 119
renderingSet tag 119
rule tag 122, 143
disableFldShp
hodconnection tag 127
disableNumSwapSubmit
hodconnection tag 127
disconnecttimeout
hodconnection tag 127
ecol
extract tag 139
string tag 146
enableAutoAdvance
RuntimeSettings 115
enableAutoTabOn
RuntimeSettings 115
enableBusyPage
RuntimeSettings 116
enableCompression
RuntimeSettings 116
enabled
apply tag 138
disconnect tag 142
event tag 108, 147
execute tag 141
extract tag 139
forwardtoURL tag 141
insert tag 138
pause tag 142
play tag 142
renderingltem tag 120
rule tag 122, 143
sendkey tag 142
set tag 140
show tag 141
enableOverwriteMode
RuntimeSettings 116

attributes (continued)

enableSameOriginPolicy
RuntimeSettings 116
enableScrRev
hodconnection tag 127
enableTokenProtection
RuntimeSettings 116
endCol
renderingltem tag 120
rule tag 122, 143
endRow
renderingltem tag 120
rule tag 122, 143
erow
extract tag 139
string tag 146
escapeHTMLTags
RuntimeSettings 116
fill
insert tag 139
from
replace tag 118, 121
handler
extract tag 148
prompt tag 149
host
hodconnection tag 127
hostSimulationName
hodconnection tag 127
immediateKeyset
apply tag 138
index
extract tag 139, 148
insert tag 139

set tag 140
indexed

extract tag 139, 148
invertmatch

oia tag 145

string tag 146
isBidi

extract tag 148

prompt tag 149
isRtlField

prompt tag 149
isRtlScreen

extract tag 148

prompt tag 149
key

sendkey tag 142
LTRImpicitOrient

prompt tag 149
LUName

hodconnection tag 127
LUNameSource

hodconnection tag 128
macro

perform tag 142

play tag 142
matchLTR

replace tag 118, 121

167

168

attributes (continued)

matchRTL

replace tag 118, 121
method

execute tag 141
name

class tag 108, 131

connection tag 147

event tag 108, 147

extract tag 139, 148

prompt tag 149

renderingSet tag 119

screen tag 145

set tag 140

setting tag 120, 123, 124, 131, 144,

145

op

set tag 140
opl

set tag 140
opl_index

set tag 140
opl_shared

set tag 140
opl_type

set tag 140
op2

set tag 140
op2_index

set tag 141
op2_shared

set tag 141
op2_type

set tag 140
optional

oia tag 145

string tag 146
overwrite

extract tag 139, 148

set tag 140
package

execute tag 141
port

hodconnection tag 128
regularExpression

replace tag 118, 121
row

insert tag 139

sendkey tag 142

string tag 145
save

extract tag 148
scol

extract tag 139
screenorientation

extract tag 148

prompt tag 150
screenSize

hodconnection tag 128
selectAllOnFocus

RuntimeSettings 117
sessionType

hodconnection tag 128
shared

extract tag 139, 148

insert tag 139

set tag 140

attributes (continued)

showHandler

extract tag 148
singlelogon

hodconnection tag 128
source

insert tag 139

prompt tag 149
Srow

extract tag 139
SSL

hodconnection tag 129
startCol

renderingltem tag 120

rule tag 122, 143
startRow

renderingltem tag 120

rule tag 122, 143
startStateLabel

forwardtoURL tag 141
status

oia tag 145
suppressUnchangedData

RuntimeSettings 117
template

application tag 107

apply tag 138

show tag 141

time

pause tag 142
TNEnhanced

hodconnection tag 129
to

replace tag 118, 121
toImage

replace tag 118, 121
transformation

apply tag 138
transformationFragment

rule tag 122, 143
type

event tag 108, 138

renderingltem tag 120

rule tag 122, 143

set tag 140
url

forwardtoURL tag 141

show tag 141
value

insert tag 139

prompt tag 149

set tag 140

setting tag 120, 121, 123, 124, 134,

144, 145

string tag 145
variableIndex

prompt tag 149
variableIndexed

prompt tag 149
variableName

extract tag 148

prompt tag 149
VTTerminalType

hodconnection tag 129
welApplID

prompt tag 149

IBM Host Access Transformation Services: Web Application Programmer's Guide

attributes (continued)
wellsPassword
prompt tag 149
widget
renderingltem tag 120
workstationID
hodconnection tag 129
workstationIDSource
hodconnection tag 129
autoEraseFields
RuntimeSettings 115
automatic disconnect and refresh
settings 109

BIDI OrderBean 102
methods 103
bidirectional API
data conversion 101
global variables 101
BMS Map (.bms and .bmc) files 150
business logic
adding to project 3
calling Integration Object 10
creating 3
deleting global variables 7
examples 7
using global variables 5

C

casesense attribute
string tag 146
caseSensitive attribute
replace tag 118, 121
caseSensitive setting
name attribute
global rule 123, 144
value attribute
global rule 123, 144
certificateFile attribute
sessionhodconnection tag 124
chaining
Integration Objects 59
class attribute
execute tag 141
class loader
policy 3
WAR 3
class loader policy
configure 3
class tag 108, 131
classes
AppletSettings 109
ApplicationKeypadTag 110
ClientLocale 111
components.name 117
DBCSSettings 111
DefaultConnectionOverrides 112
DefaultGVOverrides 112
DefaultRendering 117
HostKeypadTag 113
KeyboardSupport 114
OIA 114
RuntimeSettings 115

classes (continued)
transform 117
widgets.dojo.name 117
widgets.name 117
classSettings tag 108, 131, 134, 135
ClientLocale
settings 111
CMRequest object 95
CMResponse object 96
codepage attribute
hodconnection tag 124
codePageKey attribute
hodconnection tag 124
col attribute
insert tag 139
sendkey tag 142
string tag 146
column attribute 137
combinations tag 136
component, HATS
custom
HATS Toolkit support 26
registering 25
components 17
components.name
settings 117
componentSettings attribute
rule tag 143
componentSettings tag 120, 123, 144
ComponentWidget.xml file 23, 25
configure
class loader policy 3
connection attribute
perform tag 142
connection files 124
connection tag 147
connecttimeout attribute
hodconnection tag 127
creating business logic wizard 3
check box
Create global variable helper
methods 3
custom component, HATS
HATS Toolkit support 26
registering 25
custom host component
creating 20
custom HTML widget
creating 23
custom screen recognition 12
custom widget, HATS
HATS Toolkit support 26
registering 25
customizing
Integration Objects 81

D

DBCSSettings
settings 111

DCAS API object 98

dec attribute
set tag 141

default attribute
associatedConnections tag 147
defaultRendering tag 119

DefaultConnectionOverrides
settings 112
defaultEvent attribute
nextEvents tag 146
DefaultGVOverrides
settings 112
DefaultRendering
settings 117
defaultRendering tag 119
deleting global variables
from business logic 7
description attribute
application tag 107
event tag 138
hodconnection tag 127
renderingltem tag 119
renderingSet tag 119
rule tag 122, 143
description tag 145
disableFldShp attribute
hodconnection tag 127

disableNumSwapSubmit attribute

hodconnection tag 127
disconnect tag 141
disconnecttimeout attribute

hodconnection tag 127
Dojo widgets

customizing HATS 29

Combo box 31

Enhanced grid 35
Filtering select 37
Number spinner 39

TabContainer 40

working with 27
drawHTML method 19
dynamic 136

E

ecol attribute
extract tag 139
string tag 146
editing
files 107
EJB
using an Integration Object
enableAutoAdvance
RuntimeSettings 115
enableAutoTabOn
RuntimeSettings 115
enableBusyPage
RuntimeSettings 116
enableCompression
RuntimeSettings 116
enabled attribute
apply tag 138
disconnect tag 142
event tag 108, 147
execute tag 141
extract tag 139
forwardtoURL tag 141
insert tag 138
pause tag 142
play tag 142
renderingltem tag 120
rule tag 122, 143
sendkey tag 142

enabled attribute (continued)
set tag 140
show tag 141
enableFieldLength setting
name attribute
global rule 124
enableOverwriteMode
RuntimeSettings 116
enableSameOriginPolicy
RuntimeSettings 116
enableScrRev attribute
hodconnection tag 127
enableTokenProtection
RuntimeSettings 116
endCol attribute
renderingltem tag 120
rule tag 122, 143
enddescription tag 136
endRow attribute
renderingltem tag 120
rule tag 122, 143
ENPTUI 130
erow attribute
extract tag 139
string tag 146
escapeHTMLTags
RuntimeSettings 116
event tag 108, 138, 147

event tags
actions 138
apply 138

associatedScreens 145

description 145

disconnect 141

event 147

execute 141

extract 139

forwardtoURL 141

insert 138

nextEvents 146

oia 145

pause 142

perform 142

play 142

screen 145

sendkey 142

set 140

show 141

string 145
eventPriority tag 108
examples

business logic 7
execute tag 141
extract tag 139, 148
extracts tag 147

F

fieldSize setting
name attribute
global rule 124, 145
files
application ((hap) 107

BMS Map (.bms and .bmc) 150

connection (-hco) 124
image 151
macro (hma) 147

Index

169

files (continued)
screen capture (-hsc) 150
screen combination (.evnt) 136
screen customization (.evnt) 137
stylesheet (.css) 151
template (jsp) 135
transformation (jsp) 135

fill attribute
insert tag 139

forwardtoURL tag 141

from attribute
replace tag 118, 121

G

getHPubXMLProperties() function
HPubConvertToTableFormat style
sheet applied 62
global rule
setting tag

name attribute 123, 124, 144, 145
value attribute 123, 124, 144, 145

global rules 24
global variables

in business logic 5
globalRules tag 122, 142

H

handler attribute
extract tag 148
prompt tag 149
HAScript tag 150
HATS
<HATS:Component> tag
attributes 17
example 17
operations 18
component
HATS Toolkit support 26
registering 25
host component
<HATS:Component> tag 17
creating 20
widget
<HATS:Component> tag 17
creating 23
HATS Toolkit support 26
registering 25
HATS portlets 47
HATS Toolkit support
custom component 26
custom widget 26
Host Access Integration Objects
Java coding templates
modifying 83
using 82
host attribute
hodconnection tag 127
host component
custom
creating 20
host component, HATS
<HATS:Component> tag 17
creating 20
custom 20

170 IBM Host Access Transformation Services: Web Application Programmer's Guide

host components 17
HostKeypadTag

settings 113
hostSimulationName attribute

hodconnection tag 127
HPubHostAccess class 53
HTML widget

custom

creating 23

HTMLDDS 130
HTMLElementFactory 23

image files 151
immediateKeyset attribute
apply tag 138
immediatelyNextTo setting
name attribute
global rule 123, 144
value attribute
global rule 123, 144
importing Java code 4
index attribute
extract tag 139, 148
insert tag 139
set tag 140
indexed attribute
extract tag 139, 148
insert tag 138
Integration Object
in business logic 10
Web services 68
Integration Object chaining 59
HATS-chained Web services 60
Integration Object methods 54
common 54
Database Access 57
host access 55
using
ina]SP 86
in a servlet 86
in an EJB 89
Integration Object output
Applying XML style sheets 61
getHPubXMLProperties()
method 61
Integration Objects
customizing 81
Java class hierarchy 54
Java coding templates 81
uses 53
invertmatch attribute
oia tag 145
string tag 146
isBidi attribute
extract tag 148
prompt tag 149
isRtlField attribute
prompt tag 149
isRtlScreen attribute
extract tag 148
prompt tag 149

J

Java class
HPubHostAccess 53
Java class hierarchy
Integration Objects 54
Java code
importing 4
Javadoc 2
JAX-RPC runtime
Web service client 68
JAX-WS runtime
considerations 71
Web service client 68
JSP
using an Integration Object 86

K

key attribute
sendkey tag 142

KeyboardSupport
settings 114

keyPress tag 137

L

locale, client
settings 111
location setting
name attribute
global rule 123, 144
value attribute
global rule 123, 144
LTRImpicitOrient attribute
prompt tag 149
LUName attribute
hodconnection tag 127
LUNameSource attribute
hodconnection tag 128

M

macro (.hma) file 147
macro attribute
perform tag 142
play tag 142
macro tag 147
macro tags
associatedConnections 147
connection 147
extract 148
extracts 147
HAScript 150
macro 147
prompt 149
prompts 149
matchLTR attribute
replace tag 118, 121
matchRTL attribute
replace tag 118, 121
method attribute
execute tag 141

N

name attribute
class tag 108, 131
connection tag 147
event tag 108, 147
extract tag 139, 148
next screen settings
default.appletDelayInterval 133
default.blankScreen 133
default.blankScreen keys 133
default.delayInterval 133
default.delayStart 134
nextScreenClass 134
oiaLockMaxWait 134
print settings
printFontName 131
printNumSwapSupport 131
printOrientation 132
printPaperSize 132
printRTLSupport 133
printSupport 133
printSymSwapSupport 133
printURL 133
prompt tag 149
renderingSet tag 119
screen tag 145
set tag 140
setting tag 120, 131
alternate rendering support 117
AppletSettings 109
ApplicationKeypadTag 110
ClientLocale 111
com.ibm.hats.transform 117
components.name 117
DBCSSettings 111
DefaultConnectionOverrides 112
DefaultGVOverrides 112
DefaultRendering 117
HostKeypadTag 113
KeyboardSupport 114
OIA 114
RuntimeSettings 115
widgets.dojo.name 117
widgets.name 117
next screen settings
name attribute
default.appletDelayInterval 133
default.blankScreen 133
default.blankScreen keys 133
default.delayInterval 133
default.delayStart 134
nextScreenClass 134
oiaLockMaxWait 134
nextEvents tag 146
normal 136

(0

OIA
settings 114
oia tag 145
op attribute
set tag 140
opl attribute
set tag 140

opl_index attribute
set tag 140
opl_shared attribute
set tag 140
opl_type attribute
set tag 140
op2 attribute
set tag 140
op2_index attribute
set tag 141
op2_shared attribute
set tag 141
op2_type attribute
set tag 140
optional attribute
oia tag 145
string tag 146
otherParameters
ENPTUI 130
HTMLDDS 130
otherParameters tag 129
overwrite attribute
extract tag 139, 148
set tag 140

P

package attribute
execute tag 141
pause tag 142
perform tag 142
play tag 142
plug-ins
Credential Mapper 93
creating 97
Network Security 93
creating 97
Web Express Logon 93
creating 93
port attribute
hodconnection tag 128
portlets 47
adding JavaServer pages 51
standard
credentials 47
extending the Entry portlet 49
running Integration Objects 50
security 47
Web Express Logon 47
print settings
name attribute
printFontName 131
printNumSwapSupport 131
printOrientation 132
printPaperSize 132
printRTLSupport 133
printSupport 133
printSymSwapSupport 133
printURL 133
programming tasks 2
project
adding business logic 3
prompt tag 149
prompts tag 149

R

recognize method 21
regularExpression attribute
replace tag 118, 121
remove tag 147
renderingltem tag 119
renderingSetg tag 119
replace tag 118, 121
RESTful Web services 65
creating 71
row attribute 137
insert tag 139
sendkey tag 142
string tag 145
RuntimeSettings
settings 115

S

save attribute
extract tag 148
scol attribute
extract tag 139
screen capture (.hsc) file 150
screen combination (.evnt) files 136
screen customization (.evnt) file 137
screen recognition
custom 12
global variables 14
screen tag 145
screenCombination
event tag 138
screenDown tag 137
screenorientation attribute
extract tag 148
prompt tag 150
screenSize attribute
hodconnection tag 128
screenUp tag 137
selectAllOnFocus
RuntimeSettings 117
sendkey tag 142
sendText tag 137
server module visibility
configure 3
servlet
using an Integration Object 86
session tag 124
sessionType attribute
hodconnection tag 128
set tag 140
setCursor tag 137
setting tag 109, 120, 123, 131, 144
settings
name attribute
caseSensitive 123, 144
enableFieldLength 124
fieldSize 124, 145
immediatelyNextTo 123, 144
location 123, 144
text 124, 144
value attribute
caseSensitive 123, 144
immediatelyNextTo 123, 144
location 123, 144
text 124, 144

Index 171

shared attribute
extract tag 139, 148
insert tag 139
set tag 140
show tag 141
showHandler attribute
extract tag 148
singlelogon attribute
hodconnection tag 128
source attribute
insert tag 139
prompt tag 149
Specifying Connection Overrides 57
srow attribute
extract tag 139
SSL attribute
hodconnection tag 129
startCol attribute
renderingltem tag 120
rule tag 122, 143
startRowl attribute
renderingltem tag 120
rule tag 122, 143
startStateLabel attribute
forwardtoURL tag 141
status attribute
oia tag 145
string tag 145
stylesheet (.css) file 151
suppressUnchangedData
RuntimeSettings 117

T

tag
combinations 136
enddescription 136
keyPress 137
screenDown 137
screenUp 137
sendText 137
setCursor 137
template (jsp) file 135
template attribute
application tag 107
apply tag 138
show tag 141
text replacement 19
text setting
name attribute
global rule 124, 144
value attribute
global rule 124, 144
textReplacement tag 118
textReplacements tag 121
time attribute
pause tag 142
TNEnhanced attribute
hodconnection tag 129
to attribute
replace tag 118, 121
tolmage attribute
replace tag 118, 121
transform
settings 117
transformation (jsp) file 135

172 IBM Host Access Transformation Services: Web Application Programmer's Guide

transformation attribute
apply tag 138
transformationFragment attribute
rule tag 122, 143
type attribute 136
event tag 108, 138
renderingltem tag 120
rule tag 122, 143
set tag 140

U

Updating Web services 70

url attribute
forwardtoURL tag 141
show tag 141

using an Integration Object
in a servlet or JSP 86
in an EJB 89

\'}

value
dynamic 136
normal 136
value attribute
insert tag 139
prompt tag 149
set tag 140
setting tag 120, 121, 134
string tag 145
variableIndex attribute
prompt tag 149
variableIndexed attribute
prompt tag 149
variableName attribute
extract tag 148
prompt tag 149
VTTerminalType attribute
hodconnection tag 129

w

Web Express Logon 93
in standard portlets 47
plug-ins 93
running Integration Objects
in business logic 11
in standard portlets 51
Web services 65
Apache Axis runtime 68
considerations 71
creating 66
Integration Objects 69
traditional (WSDL-based) 66
creating a client 68
EJB Access Bean chaining 70
EJB Access Beans
Integration Object chaining 69
Integration Object 68
Integration Object chaining 69
JAX-RPC runtime 68
JAX-WS runtime 68, 71
RESTful services 65
considerations 79
creating 71

Web services (continued)
RESTful services (continued)
creating JAX-RS resources 72
customizing JAX-RS resources
handling content 77
HTTP status codes 79
limitations 79
response header 78
Shift_JIS 78
updating JAX-RS resources 75
runtime 67
testing 68
traditional 65
Web Services Interoperability 66
WebSphere Portal Toolkit 47
welApplID attribute
prompt tag 149
wellsPassword attribute
prompt tag 149
widget attribute
renderingltem tag 120
widget, HATS
<HATS:Component> tag 17
creating HTML 23
custom
HATS Toolkit support 26
registering 25
custom HTML 23
widgets 17
customizing HATS Dojo 29
Combo box 31
Enhanced grid 35
Filtering select 37
Number spinner 39
Dojo TabContainer 40
working with Dojo 27
widgets.dojo.name
settings 117
widgets.name
settings 117
widgetSettings tag 120
wizard
creating business logic 3
workstationID attribute
hodconnection tag 129
workstationIDSource attribute
hodconnection tag 129
wrapper class 66

X

xml tags
application 107
class 108, 131
classSettings 108, 131, 134, 135
componentSettings 120, 123, 144
connection 108
defaultRendering 119
event 108
eventPriority 108
globalRules 122, 142
otherParameters 129
renderingltem 119
renderingSet 119
replace 118, 121
rule 122,142
session 124

xml tags (continued)
setting 109, 120, 123, 131, 144
textReplacement 118
textReplacements 121
widgetSettings 120

Index 173

174 1BM Host Access Transformation Services: Web Application Programmer's Guide

Readers’ Comments — We'd Like to Hear from You

IBM Host Access Transformation Services
Web Application Programmer's Guide
Version 9.6

Publication No. SC27-5902-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:

* Send your comments to the address on the reverse side of this form.
* Send a fax to the following number: 1-800-227-5088 (US and Canada)
* Send your comments via email to: USIB2ZHPD@VNET.IBM.COM

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You

SC27-5902-02

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

SC27-5902-02

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Rational Enterprise Modernization UAD
Department 67RA/Building 503

Research Triangle Park, NC 27709-9990

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

-

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Printed in USA

5C27-5902-02

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	Code examples
	Using the API documentation (Javadoc)

	Chapter 2. Adding business logic
	Incorporating Java code from other applications
	Using global variables in business logic
	Business logic examples
	Example: Date conversion
	Example: Adding values that are contained in an indexed global variable
	Example: Reading a list of strings from a file into an indexed global variable
	Example: Calling an Integration Object

	Using custom screen recognition
	Example of custom screen recognition
	Custom screen recognition using global variables

	Accessing javax.servlet classes

	Chapter 3. Creating custom components and widgets
	HATS component tag and attributes
	Creating a custom host component
	Extending component classes
	Creating a custom HTML widget
	Extending widget classes
	Widgets and global rules

	Registering your component or widget
	HATS Toolkit support for custom component and widget settings

	Chapter 4. Working with Dojo widgets
	Customizing a HATS Dojo widget
	Component settings
	Widget settings
	JSON data source
	Rendered widget
	Data binding

	HATS Dojo widget customization examples
	Combo box
	Enhanced grid
	Filtering select
	Number spinner

	Using the Dojo TabContainer widget
	Using the Dojo TabContainer widget in a HATS Web project
	Using the Dojo TabContainer widget in a HATS portlet project

	Chapter 5. Programming in HATS Portlets
	Standard portlets
	Using security
	Extending the Entry portlet
	Running Integration Objects
	Using Web Express Logon
	Adding JavaServer Pages to a portlet

	Chapter 6. Programming with Integration Objects
	A common class for accessing Integration Object information
	Java class hierarchy of Integration Objects
	Integration Object methods
	Common methods
	Host Access Integration Object methods
	Database Access Integration Object methods

	Specifying Connection Overrides
	Integration Object chaining
	Applying XML style sheet processing to Integration Object output
	DTD of XML data that is returned by getHPubXMLProperties() method
	XML data using the getHPubXMLProperties() method

	DTD of XML data that is returned by getHPubXMLProperties (HPubConvertToTableFormat.xsl) method
	XML data with HPubConvertToTableFormat style sheet applied

	Chapter 7. Developing Web services
	Creating traditional (WSDL-based) Web services
	Creating a Bottom-up Web service from Integration Objects
	Testing your Web service with Web Services Explorer
	Creating a Web service client
	Creating a Top-down Web service that includes Integration Objects
	Programming with Web Services Integration Objects and EJB Access Beans
	Integration Object chaining with Web Services
	EJB Access Bean chaining with Web Services
	Special considerations with chaining Web Services

	Updating Web services
	Web services for JAX-WS runtime considerations and limitations

	Creating RESTful Web services
	Creating RESTful service JAX-RS resources
	Updating RESTful service JAX-RS resources
	Customizing RESTful service JAX-RS resource methods
	Handling content
	Content type examples

	Customizing the response header
	HTTP status codes
	JAX-RS RESTful services considerations and limitations

	Chapter 8. Integration Objects - advanced topics
	Customizing Integration Object Java code
	Choosing Integration Object templates
	Choosing Integration Object templates for a bidirectional project

	Modifying Java coding templates
	Sample modified Integration Object template
	Extracting data from non-text planes

	Using Integration Objects in a WebSphere Java EE application
	Using an Integration Object in a Web container (custom servlet or JSP)
	Using an Integration Object in an EJB container (from your own EJB)

	Connection management API
	acquireExistingTransformationConnection
	releaseExistingTransformationConnection

	Chapter 9. Creating plug-ins for Web Express Logon
	Creating custom plug-ins for Web Express Logon
	Web Express Logon plug-in interface
	com.ibm.eNetwork.security.sso.cms.CMInterface
	com.ibm.eNetwork.security.sso.CMRequest
	com.ibm.eNetwork.security.sso.CMResponse

	Writing a Network Security plug-in
	Writing a Credential Mapper plug-in
	Sample Web Express Logon plug-in
	Encrypting and decrypting plug-in parameter strings
	The DCAS API object

	Chapter 10. Using the HATS bidirectional API
	Data Conversion APIs
	ConvertVisualToLogical
	ConvertLogicalToVisual

	Global Variable APIs
	getGlobalVariable
	getSharedGlobalVariable

	BIDI OrderBean
	BIDI OrderBean methods

	Appendix A. HATS Toolkit files
	Application file (.hap)
	<application> tag
	<connections> tag
	<connection> tag
	<eventPriority> tag
	<event> tag
	<classSettings> tag
	<class> tag
	<setting> tag
	com.ibm.hats.common.AppletSettings
	com.ibm.hats.common.ApplicationKeypadTag
	com.ibm.hats.common.ClientLocale
	com.ibm.hats.common.DBCSSettings
	com.ibm.hats.common.DefaultConnectionOverrides
	com.ibm.hats.common.DefaultGVOverrides
	com.ibm.hats.common.HostKeypadTag
	com.ibm.hats.common.KeyboardSupport
	com.ibm.hats.common.OIA
	com.ibm.hats.common.RuntimeSettings
	com.ibm.hats.transform
	com.ibm.hats.transform.components.name
	com.ibm.hats.transform.DefaultRendering
	com.ibm.hats.transform.widgets.dojo.name
	com.ibm.hats.transform.widgets.name

	<textReplacement> tag
	<replace> tag
	<defaultRendering> tag
	<renderingSet> tag
	<renderingItem> tag
	<globalRules> tag
	<rule> tag

	Connection files (.hco)
	<hodconnection> tag
	<otherParameters> tag
	<classSettings> tag
	<class> tag
	<setting> tag
	<poolsettings> tag
	<webexpresslogon> tag
	<userconfig> tag

	Template and transformation files (.jsp)
	Screen combination files (.evnt)
	<combinations> tag
	<enddescription> tag
	<navigation> tag
	<screenUp> tag
	<screenDown> tag
	<keyPress> tag
	<setCursor> tag
	<sendText>

	Screen customization files (.evnt)
	<event> tag
	<actions> tag
	<apply> tag
	<insert> tag
	<extract> tag
	<set> tag
	<execute> tag
	<show> tag
	<forwardtoURL> tag
	<disconnect> tag
	<play> tag
	<perform> tag
	<pause> tag
	<sendkey> tag
	<globalRules> tag
	<rule> tag
	<associatedScreens> tag
	<screen> tag
	<description> tag
	<oia> tag
	<string> tag
	<nextEvents> tag
	<event> tag
	<remove> tag

	Macro files (.hma)
	<macro> tag
	<associatedConnections> tag
	<connection> tag
	<extracts> tag
	<extract> tag
	<prompts> tag
	<prompt> tag
	<HAScript> tag

	Screen capture files (.hsc)
	BMS Map files (.bms and .bmc)
	Image files (.gif, .jpg, or .png)
	Stylesheet files (.css)
	Spreadsheet files (.csv or .xls)
	Host simulation trace files (.hhs)
	ComponentWidget.xml
	Web Express Logon configuration file (hatswelcfg.xml)
	<credentialmapper> tag
	<networksecurity> tag
	<cmplugins> tag
	<plugin> tag
	<param> tag

	Appendix B. Notices
	Programming interface information
	Trademarks

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Readers’ Comments — We'd Like to Hear from You

